UNIT 7 TOPIC 2

Dihybrid Cross
Non-Mendelian Genefics

Objectives

\square Determine the possible gamete combination for dihybrid cross
\square Predict the outcomes of a dihybrid cross by using Punnett square

Prior Knowledge

\square What is the meaning of dihybrid cross?
\square Explain Mendel's Law of segregation
\square What is the name of gamete formation process?

Dihybrid Cross

\square Genetic cross between parental generations that differ in two traits
\square The genotype of the parent is represented by four alleles, why?
\square Example: YyRr
\square a 16 square grid Punnett square is used

	YR	Yr	yR	yr
YR	YYRR	YYRr	YyRR	YyRr
Yr	$\begin{aligned} & \bigcirc \mathrm{YYRr} \end{aligned}$	YYrr	$\begin{aligned} & \bigcirc y R r \end{aligned}$	Yyrr
$y R$	$\begin{aligned} & O \\ & \text { YyRR } \end{aligned}$	$\begin{aligned} & O \operatorname{YRr} \end{aligned}$	0 yyRR	0 yyRr
yr	YyRr	Yyrr	$\bigcirc_{y y R r}$	yyrr

Think-Pair-Share

\square If a parent somatic cell has the following genotype TtRr
\square Apply Mendel's law of segregation to figure out the gamete genotypes
\square Try on your own for 1 minutes
\square Pair up with a classmate next to you and share your answers
\square Share the answer with the whole class

Dihybrid Cross

\square Each gamete will have two alleles, one allele for each trait
\square Example:
$\square \mathrm{T}=$ tall $\mathrm{t}=$ short
$\square R=$ red $r=$ white
\square These are the possible gamete combinations

	TR	Tr	tR	tr
TR	TTRR	TTRr	TtRR	TtRr
Tr	TTRr	TTrr	TtRr	Tttr
tR	TtRR	TtRr	ttRR	ttRr
tr	TtRr	Tttrr	ttRr	ttrr

TR $\mathbf{T r} \mathbf{t R}$ or $\mathbf{t r}$

How can we determine the gamete

 combinations?
A) FOIL method

\#1 Homozygous dominant
HHBB
Gamete combinations are:
HB, HB, HB, HB
\#2 Homozygous recessive hhbb

Gamete combinations are:
hb, hb, hb, hb

How can we determine the gamete combinations?

A) FOIL method
\#3 heterozygous

HhBb
The possible gamete combinations are:

HB (first)
Hb (outside)
hB (inside)

Hb (last)

How can we determine the gamete combinations?

B) Crossing the two traits

Example:

- The parent genotype is $\mathbf{H h B b}$
- The alleles of the first trait are $\mathbf{H h}$
- The alleles of the second trait are Bb

- The possible gamete combinations are:

HB hB Hb hb

Quick Practice

1) Find out the possible gamete combinations for this parent genotype RrWw using the FOIL method

The Answer

The four possible gamete combinations are:
\square RW
\square Rw
$\square \mathrm{rW}$
\square rw

Quick Practice

2) Find out the possible gamete combinations for the parent genotype $\mathbf{A A Q Q}$ using the second method (crossing the two traits)

The Answer

The four possible gamete combinations are:
$\square A Q$
$\square A Q$
$\square A Q$
$\square A Q$

How To Do The Dihybrid-Cross Punnett Square?

\square Identify which trait is dominant and which is recessive
\square Determine the letters for the alleles of each trait
\square Write the genotype of each parent
\square Determine the gametes combinations for each parent
\square Draw a box with 16 squares
\square Label each side of the box with the 4 gametes of each parent
\square Put the dominant alleles First
\square Cross the gametes
\square Find out the offspring phenotypes
\square Find out the offspring genotypes

Crossing homozygous \mathbf{X} homozygous

Parental (P) generation
Phenotype: hairy\&black \mathbf{X} hairless\&white
Genotype: HHBB X hhbb
$\square 1^{\text {st }}$ parent gamete combinations are: HB, HB, HB, HB
$\square 2^{\text {nd }}$ parent gamete combinations are: hb, hb , hb, hb

- Offspring phenotypic ratio:

100\% hairy \& black
\square Offspring genotypic ratio

	HB	HB	HB	HB
hb	HhBb	HhBb	HhBb	HhBl
hb	HhBb	HhBb	HhBb	HhBl
hb	HhBb	HhBb	HhBb	HhBl
hb	HhBb	HhBl	HhBb	HhBl

100\% heterozygous

Crossing Heterozygous \mathbf{X} Heterozygous

P-generation
Phenotype: hairy\&black X hairy\&black Genotype: $\mathbf{H h B b} \quad \mathbf{X h B b}$
$\square 1^{\text {st }}$ parent possible gamete combinations HB Hb hB Hb

- $2^{\text {nd }}$ parent gamete combinations HB Hb hB Hb
- Offspring phenotypic ratio:

9/16 hairy \& black $3 / 16$ hairy \& white
3/16 hairless \& black $1 / 16$ hairless \& white
\square Offspring genotypic ratio:
1:2:2:1:4:1:2:2:1
Good news: you do not need to memorize this ratio!

Phenotypic ratio is 9:3:3:1

Let's Try The Dihybrid Cross!

Cross two yellow and round pea plants that are heterozygous for BOTH traits (YyRr)
Dominant traits
$>$ Yellow $=Y$
$>$ Round $=R$

Recessive traits
$>$ Green $=y$
$>$ Wrinkled=r
What are the possible gamete combinations?
$>$ Gamete 1?
$>$ Gamete 2?

$>$ Gamete 3?
$>$ Gamete 4?

Dihybrid-Cross Punnett Square Cont.

>Gamete $1=\mathrm{RY}$
>Gamete 2= Ry
$>$ Gamete 3= rY
>Gamete 4= ryRound, yellow
Round, green
(2) Wrinkled, yellow
(2) Winkled, green

- The offspring phenotypes 9/16 round \&yellow 3/16 round \& green
3/16 wrinkled \& yellow
1/16 wrinkled \& green
- The offspring genotypes

1:2:2:1:4:1:2:2:1 (not required)

Let's Practice!

NONMENDELIAN GENETICS:

Objectives

\square Differentiate between Mendelian and nonMendelian inheritance patterns
\square Describe different non-Mendelian inheritance patterns
\square Predict and interpret incomplete trait, co-dominant trait, and sex-linked traits Punnett square crosses

Jigsaw Activity

\square Students will be divided into 5 Expert groups (A-E)
\square Each expert group will have reading material -DO NOT TAKE IT \& DO NOT WRITE ON IT-and short video to learn about 1 topic (10 minutes)
\square Each expert group member will answer the question on the reading passage then all the members will develop a question for their home groups. (you can modify the question that you have in the passage)
\square Each member will go back to his/her home group to teach them what he/she have just learned and ask them a question to assess their understanding (20 minutes)
\square Be careful with the time, each member need to have enough time to explain his/her topic

Quick check!

Essential Questions

1. Can we apply Mendel's laws to all the genetic traits?
2. Are an organism's characteristics determined only by genes?

Non-Mendelian Genetics

There are other types of inheritance that do not follow Mendel's laws:

- Incomplete Dominance
- Co-dominance
- Multiple Alleles
- Sex-linked
- Polygenic Traits

Incomplete Dominance

\square There is NO dominant or recessive alleles
\square None of the alleles of the same gene is completely dominant over the other
The heterozygous phenotype is a blend of the 2 homozygous phenotypes
\square Example: Homozygous red flowers (RR) crossed with homozygous white flowers (WW). Neither trait is completely dominant which results in heterozygous pink flowers (RW).
$\square 3$ different phenotypes (red, white, and pink)

- 3 different genotypes (RR, WW, and RW)

NOTE: No lower-case alleles are used

Other Examples of Incomplete dominance

\square In humans, wavy hair is an example of incomplete dominance
\square Offspring of straight-haired and curly-haired parents comes with a wavy hair

\square Tail length in dogs is often determined by incomplete dominance
\square Pups of long-tailed and shorttailed parents often split the difference and have mediumlength tails

Incomplete Dominance Problem

What is the probability of having pink flowers if pink flowers are bred with red flowers?

Red genotype=RR
White genotype=WW
Pink genotype=RW
Answer:
50\% pink flowers
The other 50\% red flowers

It is your turn!

What is the probability of having white flowers if pink flowers are bred with pink flowers?
Red genotype=RR
White genotype=WW
Pink genotype=RW

The Answer

Parents genotypes: RW X RW
Answer: 25\% chance of white Flowers

	R	W
\mathbf{R}	$\mathbf{R} R$	$\mathbf{R W}$
\mathbf{W}	\mathbf{R}	$\mathbf{W W}$

25% white flowers
25% red flowers
50\% pink flowers

Co-dominance

\square No dominant or recessive alleles. Both traits show up in the offspring phenotype
\square Co means "together"
\square Traits are not blended; they appear separately
\square Both alleles can be represented by CAPITAL LETTERS
\square Example:

\square Also, we can use letters \& superscripts when dealing with codominance to differentiate it from incomplete dominance for example: use "F" for the flower color allele.
$F^{R}=$ allele for red flowers
$\mathrm{F}^{\mathrm{W}}=$ allele for white flowers
FRFw $^{\text {= allele for spotted flowers }}$

Co-dominance Example

In some varieties of chickens the black feather allele is co-dominant with the white feather allele. The heterozygous chickens have feathers that are

Black

Checkered checkered with black and white

If we cross black chicken with white one we will find out that:

Offspring phenotype 100\% checkered feather

Offspring genotype 100\% are heterozygous

	$\mathbf{F}^{\mathbf{W}}$	$\mathbf{F}^{\mathbf{W}}$
$\mathbf{F}^{\mathbf{B}}$	$\mathbf{F}^{\mathbf{B}} \mathbf{F}^{\mathbf{W}}$	$\mathbf{F}^{\mathbf{B}} \mathbf{F}^{\mathbf{W}}$
$\mathbf{F}^{\mathbf{B}}$	$\mathbf{F}^{\mathbf{B}} \mathbf{F}^{\mathbf{W}}$	$\mathbf{F}^{\mathbf{B}} \mathbf{F}^{\mathbf{W}}$

It's Your Turn!

What are all the possible phenotypes and genotypes when two checkered chickens are bred?

Use capital letters to solve this case
Black $=\mathrm{BB} \quad$ White $=\mathrm{WW} \quad$ checkered $=\mathrm{BW}$

The Answer

Black $=\mathrm{BB} \quad$ White $=\mathrm{WW} \quad$ checkered $=\mathrm{BW}$

$1 / 4$ black
1/2 Checkered 1/4 white

25\% black 50\% Checkered 25\% white

Let's Practice!

Multiple Alleles

\square There are more than 2 alleles controlling one gene.

- However, only two alleles are inherited
\square Another example: coat color in rabbit which is controlled by 4 alleles
\square Example: Blood type gene is controlled by 3 alleles ($\mathbf{I}^{\text {A }}, I^{\mathbf{B}}$ \& i)

Coat Color in Rabbits

\square A single gene that has at least four different alleles determines a rabbit's coat color
\square The four known alleles display a pattern of simple dominance that can produce four coat colors

Phenotype	Allele	Possible Genotypes
Order of Dominance		

ABO System

\square There are 4 blood types $A, B, A B, \& O$ which are determined by the type of antigen found on the surface of the red blood cells
\square Blood type A: red blood cells have A antigens on their surface
\square Blood type B: red blood cells have B antigens on their surface
\square Blood type AB: red blood cells have both $A \& B$ antigens on their surface

Blood type O: red blood cells have NO antigen on their surface(naked)

Intersecting Fact About Blood Type

\square Blood type displays codominance and complete dominance inheritance pattern
The relation between $\mathbf{I}^{\mathbf{A}} \& \mathbf{I}^{\mathbf{B}}$ is codominance
> So person with both $\mathbf{I}^{\mathbf{A}} \& \mathbf{I}^{\mathbf{B}}$ alleles has blood type AB
\square The relation between $\mathbf{I}^{\mathbf{A}} \& \mathbf{i}$ is complete dominance.
$>\mathbf{I}^{\mathbf{A}}$ is dominant allele, while \mathbf{i} is recessive allele $>$ Person with $\mathbf{I}^{A} \& \mathbf{i}$ alleles has blood type A
\square The relation between $\mathbf{I}^{\mathbf{B}} \boldsymbol{\&} \mathbf{i}$ is complete dominance.
$>\mathbf{I}^{\mathbf{B}}$ is dominant allele, while \mathbf{i} is recessive allele
> Person with $\mathbf{I}^{\mathbf{B}}$ \& \mathbf{i} alleles has blood type B

Possible Genotypes For Blood Types

1. Person with blood type A can be homozygous $I^{A} I^{A}$ or heterozygous $\mathrm{I}^{\mathrm{A}} \mathbf{i}$
2. Person with blood type \mathbf{B} can be homozygous $I^{B} I^{B}$ or heterozygous $\mathbf{I}^{\mathbf{B}} \mathbf{i}$
3. Person with blood type AB has only one genotype form which is heterozygous $I^{\mathbf{A}} I^{B}$
4. A person with blood type O has one genotype form which is homozygous ii

Cells	Genotypes	$\begin{aligned} & \text { Blood } \\ & \text { tynes } \end{aligned}$	
	I^{A}, $\|A\|^{A}$	Type A blood	
	$\begin{aligned} & I^{B} i, \\ & \left.\left.\right\|^{B}\right\|^{B} \end{aligned}$	Type B blood	
	$\\|\left.^{A}\right\|^{B}$	Type AB blood	
	ii	Type O blood	

Summary Of ABO Blood System

- There are 3 different alleles for blood type
- There are 6 different genotypes
- There are 4 blood types

Allele from Parent 1	Allele from Parent 2	Geno- type	Blood Type
A	A	AA	A
A	B	AB	AB
A	O	AO	A
B	A	AB	AB
B	B	BB	B
B	O	BO	B
O	O	OO	O

One More Information..

\square Each blood type can be positive or negative
\square This is determined by the presence of certain protein called Rh factor

- If red blood cells have Rh factor the person will have positive

- If red blood cells do not have Rh factor, the person will be negative

$0-$

Blood Transfusion

DONOR BLOOD TYPES

	Group A	Group B	Group AB	Group 0
Red blood cell type				
Antibodies in Plasma	$\begin{aligned} & \text { II'। } \\ & \text { Anti-B } \end{aligned}$	r) Anti-A	None	Anti-A and Anti-B
Antigens in Red Blood Cell	A antigen	B antigen	A and B antigens	None

Blood Type Problem \#1

Gells	Cenotypes
	$\left\|\mathrm{A} \mathbf{i}, I^{\mathrm{A}}\right\|^{\mathrm{A}}$
0	$\left\|\mathrm{Bi},\left.\right\|^{\mathrm{B}}\right\|^{\mathrm{B}}$
0	$\|\mathrm{~A}\|^{\mathrm{B}}$
	ii

Offspring genotype:
$1 / 2 \mathbf{I}^{\mathbf{A}} \mathbf{i}$
$1 / 2 \mathbf{I}^{\mathbf{B}} \mathbf{i}$
Offspring blood type (phenotype)
$1 / 2$ blood type A
$1 / 2$ blood type B

If a woman with $A B$ blood has children with a man who has type O, what will be the possible genotypes of their children? What will be their blood types?
Mother genotype $=\mathbf{I}^{\mathbf{A}} \mathbf{I}^{\mathbf{B}}$
Father genotype $=\mathbf{i} \mathbf{i}$

	$\mathbf{I}^{\mathbf{A}}$	$\mathbf{I}^{\mathbf{B}}$
\mathbf{i}	$\mathbf{I}^{\mathbf{A}} \mathbf{i}$	$\mathbf{I}^{\mathbf{B}} \mathbf{i}$
\mathbf{i}	$\mathbf{I}^{\mathbf{A}} \mathbf{i}$	$\mathbf{I}^{\mathbf{B}} \mathbf{i}$

Try to solve Problem \#2

Woman with type B blood has a child with type O blood. How is this possible if her husband has type A blood?

Cells	Cenotypes
	$I A_{i}, I^{A} I^{A}$
	$I B_{i}, I^{B} I^{B}$
0	$I A I^{B}$

Problem \#2 Answer

Because the child has type O blood which has only one possible genotype (homozygous recessive ii) we can conclude that both parents must be heterozygous
Mother genotype=
Father genotype =

IBi

Offspring phenotypes:
$1 / 4$ blood type $A B$
$1 / 4$ blood type A
$1 / 4$ blood type B
1/4 blood type O
Offspring genotypes
$\left.25 \%{ }^{A}\right|^{B}$

Let's Practice!

Sex-Linked Inheritance

Sex-Linked Inheritance

\square Some traits are located on the sex chromosomes (X or Y), so the inheritance of these traits depends on the sex of the parent carrying the trait.
\square Most known sex-linked traits are X-linked (carried on the X chromosome).

This is probably because the X chromosome is much larger than the Y chromosome

Sex-linked Inheritance Cont.

\square Most of sex-linked traits are recessive while the normal gene is dominant
\square Heterozygous Females $\mathbf{x c}^{c} \mathbf{X}^{\text {c }}$ are carriers
\square What is the meaning of "carrier"?
\square Homozygous recessive Females ($X^{c} X^{c}$) have the trait
\square Males with the recessive gene ($X^{\wedge} Y$) have the trait. They do not have another \mathbf{X} to counterbalance the affected gene
\square Males cannot be carriers
\square Examples - color blindness, hemophilia, and male pattern baldness

Color blindness

X-linked recessive trait

- If a woman who is a carrier for color blindness gene (she has normal vision) has children with a man who has normal vision
- What are the chances that they will have colorblind children?
- What are the chances that they will have colorblind carrier children?

Punnelt Square for colorblindness

	X ${ }^{\text {C }}$	Y	$\begin{aligned} & X^{C}=\text { normal } \\ & X^{C}=\text { colorbind } \\ & Y=\text { normal } \end{aligned}$
X ${ }^{\text {C }}$	$\begin{aligned} & \mathrm{X}^{\mathrm{C}} \mathrm{X}^{\mathrm{C}} \\ & \text { (normal) } \end{aligned}$	$X^{C} Y$ (normal)	
X ${ }^{\text {c }}$	$X^{C} X^{c}$ (normal)	X'Y (colorblind)	

Think About This Situation

\square If a homozygous woman with normal vision has children with color blinded man, do you think the male children will be color blinded like their dad?
\square Remember:
$\mathbf{X C}^{\mathbf{C}}$ is a chromosome with normal allele
X^{c} is a chromosome with color blindness allele
\mathbf{Y} is a normal chromosome

Solution

\square Mother phenotype

- Homozygous normal vision
\square Mother genotype

$\square \mathbf{X C}^{\mathrm{C}} \mathbf{X C}^{\mathbf{C}}$

\square Father phenotype

- Color blinded
\square Father genotype
$\square \mathbf{X c}^{\mathrm{c}} \mathbf{Y}$
\square Offspring phenotype
\square All females will be carriers
\square All males will be normal

Who Discovered The Sex-Linked Inheritance?

Thomas Morgan

\square Studied fruit flies (Drosophila melanogaster)
\square He tested Mendelian inheritance
\square Morgan's crossed:
\square White-eyed male
\square Red-eyed female (normal eye color)
P generation
(1)

Punnett Square For Morgan's

Experiment

Cross homozygous redeyed female with whiteeyed male

X^{R}	X^{R}
$X^{R} X^{r}$	$X^{R} X^{r}$
$X^{R} Y$	$X^{R} Y$

Offspring phenotype ratio: 50\% red-eyed females 50\% red-eyed males

Cross heterozygous redeyed female with redeyed male

\mathbf{X}^{R}

$\mathbf{X}^{R} \mathbf{X}^{R}$	$\mathbf{X}^{R} \mathbf{X}^{r}$
$\mathbf{X}^{R} \mathbf{Y}$	$\mathbf{X}^{r} \mathbf{Y}$

Offspring phenotype ratio:
50% red-eyed females
25% red-eyed males
25% white-eyed males
Red to white eyes ratio is $\mathbf{3 : 1}$

Conclusion of Morgan's Experiment

\square White eyes were mostly linked to males
\square Some traits are sex-linked
\square Trait was found on X chromosome
\square Red eye allele is dominant

\square White eye allele is recessive

- Female homozygous Dominant red-eyed $X^{R} X^{R}$
\square Female heterozygous red-eyed $X^{R} X^{r}$

\square Female homozygous recessive white-eyed $X^{r} X^{r}$
\square Males have 2 possible genotypes \& 2 phenotypes:
\square Red-eyed $X^{R} \mathbf{Y}$
- White-eyed $\mathbf{X r}^{r} \mathbf{Y}$

Let's Practice!

Polygenic inheritance

\square Polygenic traits are traits that are controlled by two or more genes
\square Polygenic = having many genes
\square When multiple genes act together to produce a physical (phenotypic) character, a range of differences occur

 6/64

四

Examples of Polygenic inheritance

\square Human height
\square Eye color
Skin tone is determined by 4-6 genesthat means
 that there may be 4-6 different chromosomes involved!

Environmental Effect on Genes Expression

\square Characteristics are not solely determined by genes, they are also determined by the interaction between genes and the environment.
\square Environmental factors such as diet, temperature, oxygen level, humidity, light cycles, and the
 presence of mutagens can all impact which of an animal's genes are expressed, which ultimately affects the animal's phenotype

Thermosensitivity of freshwater turtle embryos.

\square Scientists have shown that intermediate temperatures $\left(28.5^{\circ} \mathrm{C}\right)$ can yield a mixed of both males and females turtle
\square The thermosensitive period that regulates sex differentiation last about 2 weeks during the middle of the development of the animal.
\square At $30^{\circ} \mathrm{C}$ (during thermosensitivity period)all E. oribicularis to be females
\square At $25^{\circ} \mathrm{C}$ only males hatch.

Indifferent
gonads

Expression or repression of Sox9 gene

Male or
female

Exit Ticket

1. Can we apply Mendel's laws to all the genetic traits? Explain
2. Are an organism's traits determined only by its genes? Explain

