

TOPIC 2 LEARNING TARGETS

 Use Punnett squares for unusual monohybrid crosses – incomplete dominance, codominance, blood types, sex-linkage

Use Punnett square for dihybrid crosses

NEW GENETICS VOCABULARY

- Incomplete dominance
- Codominance
- Polygenic trait
- Epistasis
- Multiple alleles

- Pleiotropy
- Sex-linked trait
- Barr body
- Gene mapping
- Gene linkage

WHAT IS A TRAIT?

Ways of looking, thinking, or being

Types of traits

- Dominant (Topic 1)
- Recessive (Topic 1)
- Polygenic (Topic 2)
- Sex-linked (Topic 2)

Autosomal (Topic 3)

WHAT IS COMPLETE DOMINANCE?

 In Mendel's classic pea crosses, the F₁ offspring always looked like one of the two parental varieties because one allele in a pair showed complete dominance

 Phenotypes of heterozygote and dominant homozygote are indistinguishable

WHAT IS INCOMPLETE DOMINANCE?

There is no dominant allele or recessive allele

Example: Red (RR) x White (rr) = Pink (Rr)

WHAT IS CODOMINANCE?

There is no dominant allele or recessive allele but both are expressed

PRACTICE PROBLEM #1

If brown hair and white hair horse alleles show incomplete dominance, what offspring ratios will you see if you cross a brown horse with a white horse?

	12	

PRACTICE PROBLEM #2

If red and white flower alleles show codominance, what offspring ratios will you see if you cross a red flower with a white flower?

	12	

TOPIC 2 LEARNING TARGETS

 Use Punnett squares for unusual monohybrid crosses – incomplete dominance , codominance , blood types, sex-linkage

•Use Punnett square for dihybrid crosses

WHAT IS A POLYGENIC TRAIT?

•Two or more genes affect a single phenotype

Example: Eye color, skin color, height

WHAT DOES EPISTASIS MEAN?

 The phenotypic expression of one gene alters that of another independently inherited gene

Example: Coat color in Labrador retrievers

Epistasis in Coat Colors

	EB	Eb	(eB)	(eb)
EB	EEBB	EEBb	EeBB	EeBb
	black	black	black	black
Eb	EEBb	EEbb	EeBb	Eebb
	black	chocolate	black	chocolate
eB	EeBB	EeBb	eeBB	eeBb
	black	black	yellow	yellow
eb	EeBb	Eebb	eeBb	eebb
	black	chocolate	yellow	yellow

C Brooks/Cole, Cengage Learning

BLOOD TYPE DISTRIBUTIONS

KEY ANTIGEN

This graphic shows approximate worldwide distributions of different blood types. Note that for different locations and ethnicities figures vary from those shown in this distribution.

© Andy Brunning/Compound Interest 2018 - www.compoundchem.com | Twitter: @compoundchem | FB: www.facebook.com/compoundchem This graphic is shared under a Creative Commons Attribution-NonCommercial-NoDerivatives licence.

• • • The ABO blood system

Genotypes	Phenotypes (Blood	
^ ^	types) A	
IA IB	AB	
I^i	A	
B B	В	
[₿] i	В	
ii	0	

Note:

- Blood types A and B have two possible genotypes homozygous and heterozygous.
- Blood types AB and O only have one genotype each.

© 2007 Paul Billiet ODWS

WHAT DOES MULTIPLE ALLELES MEAN?

Two or more alleles affect a single gene

 Example: Blood type (A, B, O)

	Group A	Group B	Group AB	Group O
Red blood cell type		B	AB	
Antibodies in Plasma	入 イト Anti-B	Anti-A	None	Anti-A and Anti-B
Antigens in Red Blood Cell	₽ A antigen	↑ B antigen	P A and B antigens	None

PRACTICE PROBLEM #3

If a father with blood type A (I^Ai) and mother with blood type B (I^Bi) have a child together, what offspring ratios will you see?

	12	

WHAT IS PLEIOTROPY?

A single gene has multiple effects on unrelated traits

Example: Sickle cell anemia

COMPARE AND CONTRAST

Polygenic trait Multiple alleles Pleiotropy

WHAT IS A SEX-LINKED TRAIT?

•A gene is located on either sex chromosome

Most are found on the X chromosome

 Example: Hemophilia (x-linked) causes blood not to clot, Auricular hypertrichosis (y-linked) which causes excessive hair in the ear

Contraction of the second	autority 2	3	(Carolina)	and the second s		Cheming Anominan 5
and the second s	7	8	9	spongue 10	1100203	1 2
13	14 No.	15 000000000000000000000000000000000000		16	17	18
3 19	置置 20	₩ € 21	ê 22		x	Y

Possible offspring:

Normal vision

Normal vision (Corblindness carrier)

Normal vision

WHO WAS THOMAS MORGAN?

 Early 1900s, he and his students studied a species of fruit flies, Drosophila melanogaster

 Discovered sex-linked traits by choosing the right experimental organism for his research

WHO WAS THOMAS MORGAN? (CONT'D)

 "Two years' work wasted. I have been breeding those flies for all that time and I've got nothing out of it."

 Eventually, he and his team discovered a mutant male with white eyes (X^r)

WHY FRUIT FLIES?

 Fruit flies have only four pairs of chromosomes (three pairs of autosomes, one pair of sex chromosomes)

 Prolific breeders with hundreds of offspring from each mating

New generation every two weeks

PRACTICE PROBLEM #4

	25		

PRACTICE PROBLEM #5

	20	

THINK-PAIR-SHARE

Question: Why are males affected much more often than females by X-linked disorders?

For the next minute, quietly think about the following questions.

For the next minute, with your neighbor, talk about your responses.

WHAT IS A BARR BODY?

 An inactivated X chromosome in each cell of a female mammal

 Example: Tortoiseshell cats have both cells where the X chromosome with orange allele is active and cells where the X chromosome with black allele is active

PICK YOUR PROBLEM

- For the next 15 minutes, quietly work alone or with your neighbor to create a question a genetics problem to be given as an assignment to a classmate.
- The problem must test incomplete dominance, codominance, multiple alleles, polygenic traits, or sexlinked traits.
- Your problem must have an answer key that includes all of your work.

TOPIC 2 LEARNING TARGETS

 Use Punnett squares for unusual monohybrid crosses – incomplete dominance, codominance, blood types, sex-linkage

Use Punnett square for dihybrid crosses

WHAT IS GENE MAPPING?

Determining the precise position of a gene on a chromosome

Once the position is known, it can be shown on a diagram

WHAT IS GENE LINKAGE?

The tendency of DNA sequences that are close together on a chromosome to be inherited together during meiosis

MONOHYBRID CROSS

D = Dominant Allele d = Recessive Allele

Mendel's F_1 Generation Self- or cross-pollination

PRACTICE PROBLEM #6

If you have a grey bodied, striped fish (GgRr) breed with a yellow bodied, unstriped fish (ggrr), how would you write that on a dihybrid cross and what would the phenotype ratios be?

GgRr x ggrr

foil method:

