CELLULAR RESPIRATION! THE PROCESS THROUGH WHICH YOUR CELLS OBTAIN USABLE ENERGY

EQUATION

Glucose + Oxygen \rightarrow Energy + Carbon Dioxide + Water

$C_6H_{12}O_6 + 6O_2 \rightarrow ATP + 6CO_2 + 6H_2O$

CELLULAR RESPIRATION SUMMARY

- Location: Mitochondria (Eukaryotes), Cell Membrane/Cytoplasm (Prokaryotes)
- Goal: Produce ATP from Glucose
- Main Processes:
 - I) Glycolysis
 - 2) Kreb's Cycle
 - 3) Electron Transport Chain

RECALL: WHAT IS ATP?

- It is a molecule that "stores" energy in its bonds
- When used, the energy in ATP can act on other compounds like an enzyme, and either break their chemical bonds, or form them
- ATP stands for "Adenosine Triphosphate"

STRUCTURE OF A MITOCHONDRION

Mitochondria Structural Features

Glycolysis occurs in cytoplasm of cell
 Kreb's Cycle occurs in matrix
 ETC occurs in inner membrane

TWO TYPES OF RESPIRATION

Aerobic

Anaerobic

- Without oxygen
 - Makes a little ATP
 - Only glycolysis

- With oxygen
- Makes a lot of ATP
- Includes all 3 steps

PART I: GLYCOLYSIS

- Purpose: Glucose is broken down into two smaller molecules (pyruvate 3 carbons), send electrons to ETC
- **Type:** Aerobic AND Anaerobic
- Location: cytoplasm

- **Reactants:** Glucose
- **Products:** Pyruvate, NADH, ATP

GLYCOLYSIS

An enzyme splits the glucose into 2 pieces, called "**Pyruvate**". The process is called "**Glycolysis**".

The split also produces <u>2 ATP</u> Molecules

PART 2: KREB'S CYCLE

- **Purpose:** Pyruvate broken down into CO₂, send electrons to ETC
- Type: Aerobic ONLY
 Location: matrix
 Reactants: pyruvate
 Products: NADH, FADH2, ATP, and CO2

KREBS/CITRIC ACID CYCLE

The two Pyruvate molecules enter the **mitochondria** and undergo reactions which produce 2**more ATP** Molecules, plus CO₂ molecules as waste

The CO₂ leaves the cell

The ATP is available for use by the cell for energy

PART 3: ELECTRON TRANSPORT CHAIN

- Purpose: Electrons from NADH and FADH2 are passed to oxygen → Water
- ATP is made using ATP Synthase
- Type: Aerobic ONLY
- Location: Inner Membrane
- Reactants: Oxygen
- **Products:** Water, ATP

, NADH, FAPAZ , NADH, FAD

ELECTRON TRANSPORT CHAIN

Inside the Mitochondria, $oxygen (O_2)$, the final e- acceptor, is used to drive additional reactions that produce <u>32</u> more ATP molecules

The process is called Electron Transport

Water (H_2O) is also produced, and exits the cell

 H_2O

ENERGY YIELD

- 2 ATP from Glycolysis
- 2 ATP from Kreb's Cycle
- 32-34 ATP from Electron Transport Chain

36-38 Total ATP!!!

©1999 Addison Wesley Longman, Inc.

ANAEROBIC RESPIRATION (FERMENTATION)

Occurs in the absence of oxygen

Glycolysis only

- Goal: break down glucose
 - Produce 34-36 ATP fewer than aerobic cell resp
- Two Types: Lactic Acid and Alcoholic

LACTIC ACID FERMENTATION

Equation: Gives us lactic acid and ATP

Happens in: Animals, prokaryotes

Examples in Everyday Life: Muscle cells during

exercise, yogurt, pickles, etc.

LACTIC ACID FERMENTATION

ALCOHOLIC FERMENTATION

Equation: Gives us alcohol (ethanol), CO2 and ATP

Happens in: Yeast and other microorganisms

Examples in Everyday Life: Yeast causes bread to

rise!

ALCOHOLIC FERMENTATION

