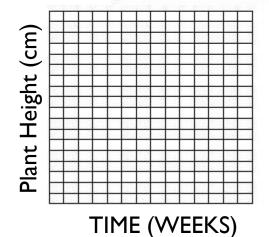
9/11 WARM-UP


Handouts from last time

- Handout with my handwriting on it is for your binder (nothing to write, just keep in binder for referencing)
- Second handout: you ARE completing (use the checklist on 1st paper)
 - Line graph two lines (one for each data set)
 - Questions on back
 - Don't forget to label x-axis, y-axis, and provide title

week person. From the taxa route the experiment on the graph octow

Week	Plants Grown in Sterilized Soil	Plants Grown in Nonsterilized Soil
1	0.8 cm	2.0 cm
2	1.5 cm	5.5 cm
3	2.0 cm	8.7 cm
4	2.3 cm	10.0 cm
5	2.4 cm	12.0 cm
6	3.8 cm	16.2 cm
7	5.0 cm	19.1 cm
8	6.0 cm	25.0 cm

Color-code lines (ex: blue for sterilized soil)

DATA ANALYSIS PRE-AP BIOLOGY; UNIT I TOPIC 4

Objectives:

- I can record (quantitative) data in tables and charts, using units
- I can organize data to show the relationship between variables on appropriate graphs
- I can identify and discuss trends using data

ORGANIZING DATA COLLECTION

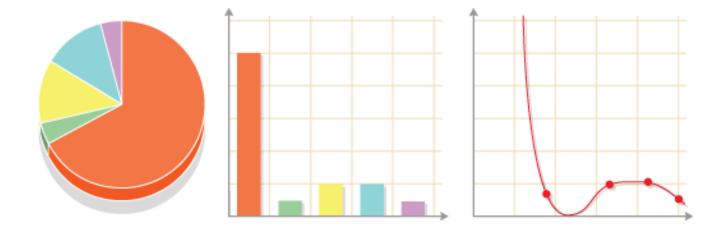
- During an experiment, scientists use data tables (charts) to record their data.
 - > Data tables include vertical *columns* and horizontal *rows*.
 - Each column and row should be labeled so you know what each number or description "means."
 - Should have a title that fully communicates what information is displayed in the table (this could be the same as your graph title)

Bird Sightings at Willow Point							
Date	# Sparrows	# Wrens	# Jays				
May 12	43	12	10				
May 13	54	13	8				
May 14	44	11	13				
May 15	52	14	9				
May 16	47	10	10				

	Direction of Movement								
Organism	Toward Light	Away from Light	Neither						
Euglena	х								
Paramecium			Х						
Fungus			Х						
Coleus plant	х								
Earthworm		Х							

Plant Characteristics

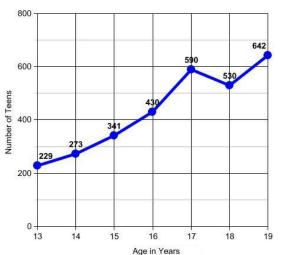
Plant	Type of Growth	Leaves	Flowers	Fruit
Cucumber	sprawling vines	fuzzy, dark green, 3-5 lobes	yellow	long and spiny
Eggplant	erect, bushy stems	fuzzy, large ovate	violet	large, egg-shaped berry, varying in color
Pumpkin	sprawling vines	large, fuzzy, triangular, lobed	yellow	large (2-20 lb), oblate to oblong, smooth rind
Pepper	straight and woody	slick, medium green	white	juiceless berries or pods, varying shape, size, and color
Okra	erect, shrub-like	heart-shaped and 3-5 lobes	yellow, crimson center	hairy, tapering capsule, 4-10 inches long


WHY TURN A CHART INTO A GRAPH?

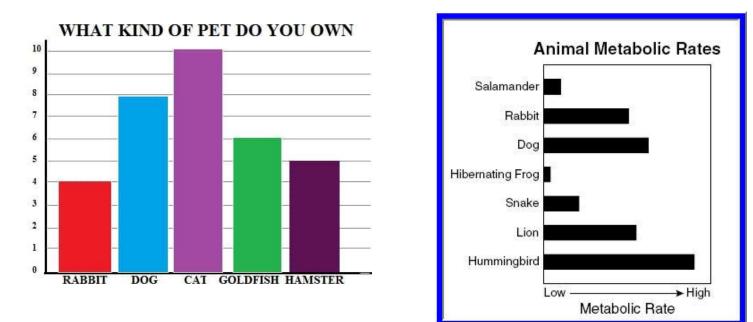
Visualizes the data (most humans are visual learners)

Easily and quickly identify patterns or trends in the data

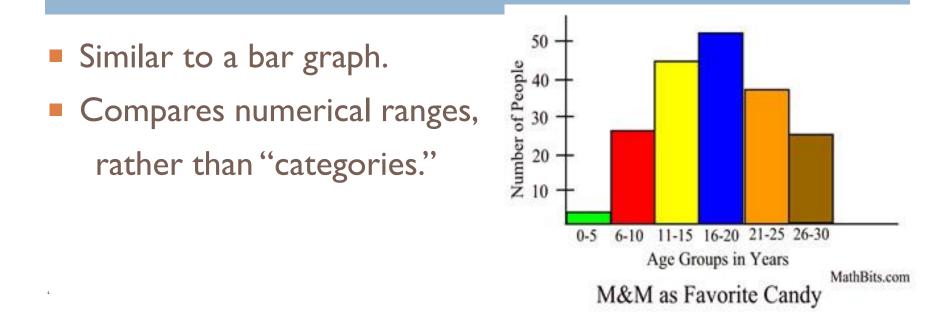
10 Largest Cities in the World		10 Largest Cities in the World						
City	Population		1	U La	irgest Citi	es in the	world	
Tokyo-Yokohama	37,900,000		São Paulo					4
Jakarta	30,000,000		Beijing					1
Seoul	26,100,000		Mexico City					
Delhi	25,703,000	5	New York City					g
Shanghai	25,400,000	nding	Karachi Shanghai					ending
Karachi	24,000,000	scer	Delhi					Asce
New York City	23,632,722	Ď	Seoul	_			- 1	<
Mexico City	22,200,000		Jakarta					
Beijing	21,650,000		Tokyo-Yokohama					
São Paulo	21,250,000	Y		0	10,000,000	20,000,000	30,000,000	40,000,000


TYPES OF GRAPHS

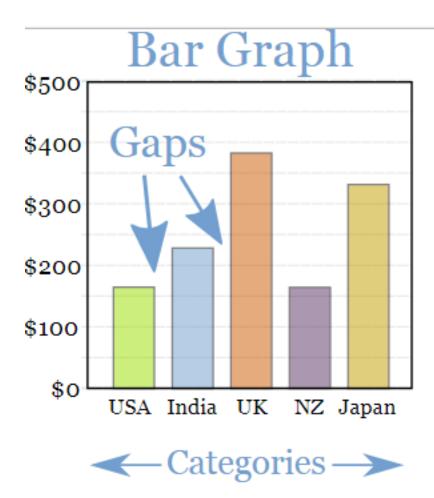
Pie Bar/Histogram Line


LINE GRAPH

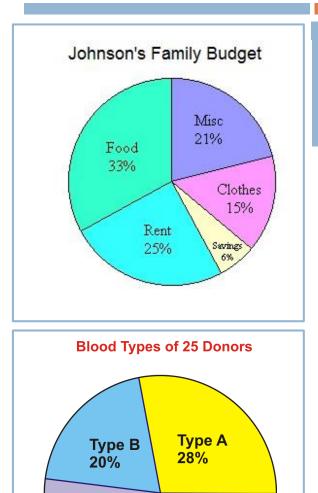
- Both variables on the x (horizontal) and y (vertical) axes are quantitative / numerical
 - Often (but not always), the variable on the x axis is time (measured in days, months, years, etc.).
- Connected points allow us to see an overall trend in the data.
 Smallown Teens With Cells Phones
- Extrapolation: when we estimate
 values beyond our given data points on
 the x axis.



BAR GRAPH


- Used to compare values from different "categories"
- One variable on the x axis that is typically QUALITATIVE
- One variable on the y axis that IS QUANTITATIVE

HISTOGRAM


Example: the number of people within various age ranges who consider M&M's to be their favorite candy at various age is depicted in the histogram shown below. Notice that the bars are not spaced apart like in a bar graph. Instead, they are connected.

Histogram

Type AB

16%

Type O 36%

PIE GRAPH (CHART)

- Used to compare the parts of a whole.
 - Percentages or fractions

We don't make these in biology, but you should know how to read/analyze one.

REVIEW: QUALITATIVE VS. QUANTITATIVE

- Qualitative: descriptions or categories of something.
 - Example: types of candy or the characteristics of an apple
- Quantitative: numerical or counted measurements
 - Example: number of students or how much an apple weighs

Qualitative

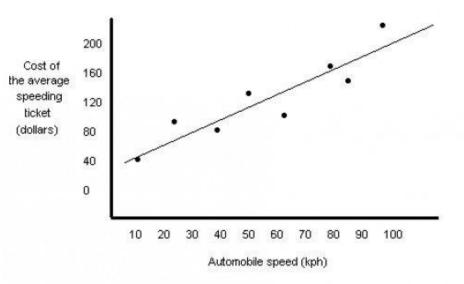
Blue, Red, and Yellow Birds

Quantitative

13 Trees

SCIENTIFIC GRAPHS MUST INCLUDE:

- I. a descriptive title
- 2. variables placed on the correct axes
- 3. labeled axes with units in parentheses (if applicable)
- 4. properly scaled axes
- 5. properly plotted points or bars
- 6. a key/legend (if applicable)

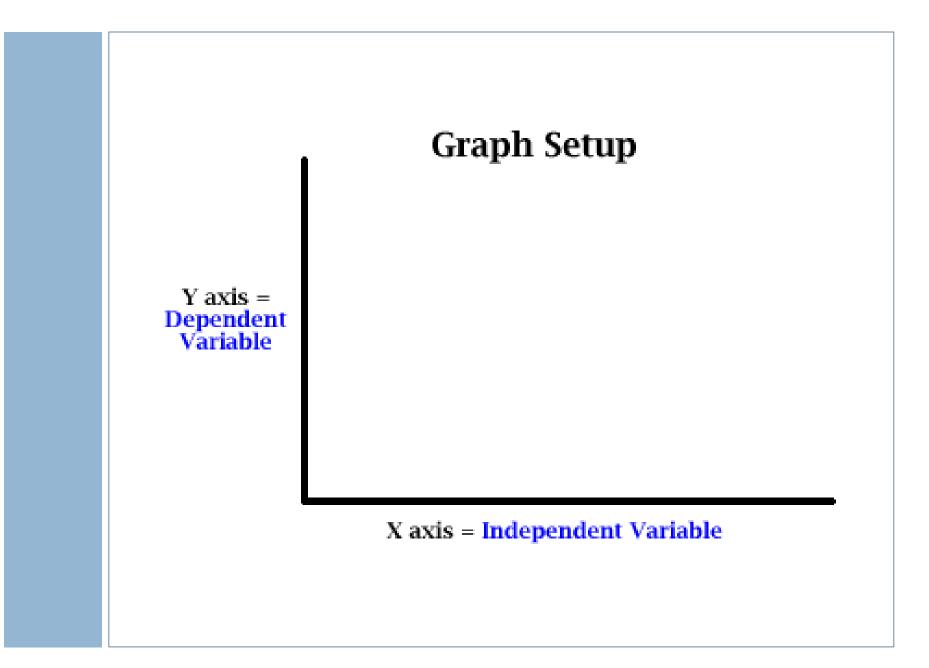

MORE DETAIL: TITLE

first blank is independent variable

second blank is dependent variable

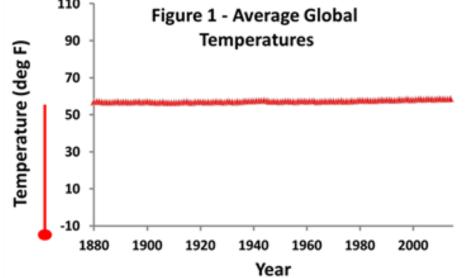
For example, the title for the scatter plot given below could be rewritten as "The effect of automobile speed on speeding ticket cost."

The Dependence of Traffic Ticket Cost on Automobile Speed

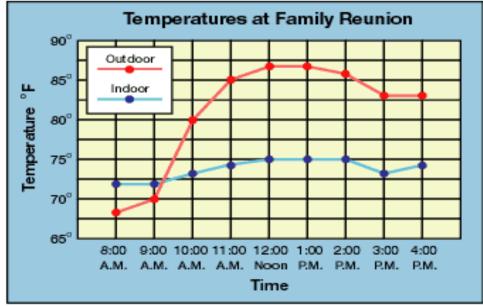

MORE DETAIL: VARIABLES LABELED ON THE CORRECT AXES

- independent variable label goes on the x-axis
- dependent variable label goes on the y-axis
 - You can remember this using the memory trick "DRY MIX"

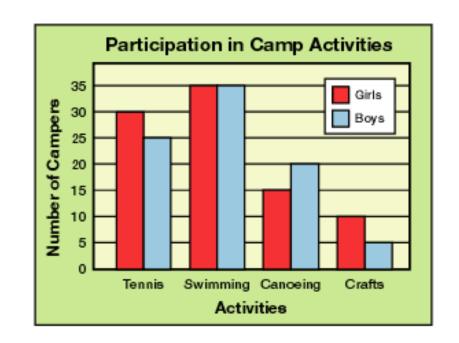
DRY = Dependent Responding Y axis MIX = Manipulated Independent X axis


For most labels, you should *include units* (in parentheses)

Example: Average Height of Grass (cm)


MORE DETAIL: APPROPRIATE SCALES

- Scale your axes so that the data is spread out across the whole grid
- The graph given below has an **badly** scaled y axis
 - scale of the y-axis should only include values between 50-70*F
- When creating your scale, you must write values along the entire axis!



MORE DETAIL: KEY / LEGEND

- Two different sets of data can be plotted on the same graph to compare them to each other.
 - Must include a key/legend to distinguish between the different lines.

Double Line Graph

PRACTICE GRAPH #I:

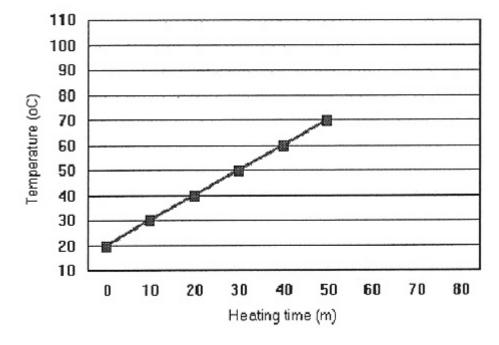
Let's say scientists were attempting to determine the effect of changing pH levels (a measure of acidity) in a pond on the number of surviving tadpoles. They counted the number of tadpoles found in ponds at various pH levels. Their data is given below. Please graph the data on the next page—making sure to include all the elements of a "proper scientific graph"—and answer the questions on your notes.

pH of water	Number of tadpoles
8.0	45
7.5	69
7.0	78
6.5	88
6.0	43
5.5	23

									лог	water		Null	iber of	taupoies	
									8.	.0			45	;	
									7.	.5			69)	
									7.	.0			78	}	
									6.	.5			88	}	
									6.	.0	43				
-			 						5.	.5	23				
		 	 			<u> </u>		 							
-															
-			 												
-		 	 					 							
Ī															
F															
ŀ								 							
ŀ		 													
L	1	 			 				 		 				

GRAPH ANALYSIS QUESTIONS

- I. What kind of graph did you use to plot the data and why?
- 2. What is the I.V.?
- 3. What is the D.V.?
- 4. What is the OPTIMUM water pH for tadpole survival?


HOW DO I ANALYZE A GRAPH?

- I. Read the title and axis labels for a graph or the title and all headings for a chart.
- 2. Try to identify the independent and dependent variables.
- 3. Some people choose to read the question before completing steps I and 2, and some people choose to complete steps I and 2 before reading the question.
- 4. Some terms you may want to know...
 - Maximum / optimum = the highest / best value
 - Minimum = the lowest value

PRACTICE PROBLEM #1

Based on the data in the graph to the right, the temperature of water at 25 minutes is

- a) 15°F
- b) 15°C
- c) 45°F
- d) 45°C

Heated Water Temperature Change

PRACTICE PROBLEM #2

The information to the right was collected in the field while studying the effect of pH on the growth of the duckweed plant. The data shows that duckweed has optimum growth at a pH of:

b) 6

c) 8

d) 12

Pond	pH of Pond Water	Number of Duckweed Plants
А	6	150
В	12	300
С	8	500
D	4	80