

Chromosome

DNA
DNA codes the
genetic information on a gene.

Incomplete
 Dominance
 Topic 2: Variations of Dominance

- By the end of this topic, I should be able to:
- Use Punnett squares for exceptions to Mendelian Genetics (incomplete dominance, codominance, blood types, and sex-linkage)
- Use Punnett squares for dihybrid crosses

Exceptions to Simple Dominance

- Incomplete Dominance: alleles "blend" (ex: pink flowers)

- Codominance: both alleles show up in their "pure form" (ex: red and white splotchy flowers)

Incomplete Dominance

- There is no dominant allele or recessive allele
- Blending: Red and White flowers
- R=Red
- W=White
- RW=Pink

Situation: If red and white flower alleles show incomplete dominance, what offspring ratios will you see if you cross a Red-flowered plant with a white-flowered plant?

Parent Genotypes: \qquad
Offspring Ratios:
Genotype: \qquad

Codominance

- There is no dominant or recessive allele but both are expressed
- Ex: a chicken with white \& black feathers

Situation: If black and white chicken alleles show codominance, what offspring ratios will you see if you cross a black chicken with a white chicken? Hybrids display speckled coloration.

Parent Genotypes: \qquad

Offspring Ratios:
Genotype: \qquad
Phenotype: \qquad

Multiple Alleles

Sometimes there are more than two alleles for a particular gene. We call this inheritance pattern multiple alleles. For example, there are three alleles controlling human blood type-A, B, and O. A and B are both dominant (express codominance) over O.

Blood Type:

The ABO blood system

Genotypes	Phenotypes (Blood	
$\\|\left.^{\text {A }}\right\|^{\text {A }}$	types) A	
$\\|\left.^{\text {A }}\right\|^{\text {B }}$	AB	
${ }^{\mathbf{A}} \mathbf{i}$	A	
$\left.1^{\text {B }}\right\|^{\text {B }}$	B	
$1{ }^{18}$	B	
ii	0	

Note:

- Blood types A and B have two possible genotypes homozygous and heterozygous.
- Blood types AB and O only have one genotype each.
- Type A=AA, AO
- Type B=BB, BO
- Type $\mathrm{O}=\mathrm{OO}$
- Type AB = AB

Situation: If two parents with blood type AB have children, what offspring ratios will you see?

Parent Genotypes:

Offspring Ratios
-Genotype:
-Phenotype

Each blood group is represented by a substance on the surface of red blood cells (RBCs). These substances are important because they contain specific sequences of amino acid and carbohydrate which are antigenic.

More Info...

- Since there are three different alleles, there are a total of six different genotypes at the human $A B O$ genetic locus.

Allele from Parent 1	Allele from Parent 2	Geno- type	Blood Type
A	A	AA	A
A	B	AB	AB
A	O	AO	A
B	A	AB	AB
B	B	BB	B
B	O	BO	B
O	O	OO	O

Blood Types A \& B

- If someone has blood type A, they must have at least one copy of the A allele, but they could have two copies. Their genotype is either AA or AO. Similarly, someone who is blood type B could have a genotype of either BB or BO .

Blood Types	Possible Genotypes
	AA
A	AO
	BB
B	BO

Blood Type AB \& O

- A blood test of either type $A B$ or type O is more informative. Someone with blood type $A B$ must have both the A and B alleles. The genotype must be AB. Someone with blood type O has neither the A nor the B allele. The genotype must be OO.

Blood Type	Genotype
$A B$	$A B$
O	$O O$

Sex linked inheritance

- Sex linkage = the presence of genes on a sex chromosome (X or Y)
- X-linked Genes = genes found on the X chromosome
- Y-linked Genes = genes found on the Y chromosome
- Sex linkage was discovered by Thomas Morgan while working with fruit flies...tiny and easy to mate!
- Fruit flies can have red or white eyes
- Morgan noticed that there were a few white eyed males, but almost no white-eyed females...

Sex-linked traits

Thomas's Conclusion

- The gene for fruit fly eye color is on the X chromosome
- Compare the size of the X and Y chromosomes!

- Remember, males have only 1 X chromosome, while females have 2

Red Eye Allele: X^{R}
White Eye Allele: X r

Herminge $\overbrace{8}^{8}$
 48
 48
 80 80 80
 剈
 $\overbrace{6}^{5} 0$

 8.8
 48
 à

Example 1: $X^{R} X^{R} \times X^{r} Y$

- Red eyed female x white-eyed male
$X^{R} \quad X^{R}$

Phenotype Ratio:

50\% red-eyed females 50\% red-eyed males

$X^{R} X^{r}$	$X^{R} X^{r}$
$X^{R} Y$	$X^{R} Y$

Example 2: $X^{R} X^{r} \times X^{R} Y$

- Red-Eyed Female (HETEROZYGOTE) x Red-Eyed Male

Phenotype Ratio:

50\% Red-eyed females
25\% Red-eyed males
25\% White-eyed males

A Human Example of Sex Linkage

- Hemophilia is a human X-linked disorder that causes blood to clot incorrectly \rightarrow patient "bleeds out" after a minor cut
- Normal Allele: XH^{H}
- Hemophilia Allele: Xh $^{\text {h }}$

Common in Anastasia's Family...just the men!

Hemophilia

- Situation: Carrier Mother X Normal Father
- Parent Genotypes:

$$
X^{H} X^{h} \times X^{H} Y
$$

- Phenotype Ratio:
50% normal females
25% normal males
25% hemophilic males
$X^{H} \quad X^{h}$

Polygenic

- Produced by interaction of several genes
- Show wide ranges of phenotypes
- Example: human skin and hair color and other complex traits
$A a B b C c \quad A a B b C c$

Phenotypes:
Number of

$1 / 64 \quad 6 / 64$

 15/64 20/64 15/64 6/64
Dihybrid Cross

- Involves two characteristics (two pairs of contrasting traits) for each individual.
- Predicting the results of a dihybrid cross is more complicated than predicting the results of a monohybrid cross.
- All possible combinations of the four alleles from each parent must be considered.

Dihybrid Cross (2 factors): a 16 square grid that is used to predict and compare the genetic variations that will result when crossing 2 traits of two organisms.

RrYy x RrYy

How to's of Dihybrid Crosses

- 1. Figure out the alleles:
- Identify what trait/letter is Dominant (B - Black fur)
- Identify what trait/letter is Recessive (b - Brown fur)
- 2. Draw your box (16 squares for dihybrids!)
- 3. Determine the Possible gametes (sex cells) that could be made from the parents.
- You should have 4 combinations (For AaBb: AB, Ab, aB, \& ab)
- The letters should be all different for each combination! (Yr or Ab)
- 4. Label each side of Box, Plug \& Chug!
- Put the same letters together again (AABb)
- Make sure to put dominant alleles First! (AaBb)
- 5. Determine your possible Genotypes! (1/16 bbrr, etc)
- Double check your work, all the possible genotypes should add up to 16 !
- 6. Determine your possible Phenotypes! (1/16 brown wrinkled, etc)
- Double check your work, all the possible phenotypes should add up to 16 !

Expressing probabilities for genotypes \& phenotypes (2 factor cross)

- Ratios:
- 4/16: fractions (parts of the total - don't reduce)
- Genotype ratios are typically not used in 2 factor crosses
- Phenotype ratios use the DD:DR:RD:RR pattern
- Example- 9:3:3:1 (DD: DR: RD: RR)
- Percentages:
- Need to label with trait

Resulting genotypes: $9 / 16 R-Y-: 3 / 16 R-y y: 3 / 16 r r Y-: 1 / 16 r r y y$ Resulting phenotypes: $9 / 160: 3 / 160: 3 / 160: 1 / 160$

Finding the Gametes for Dihybrid Crosses

- Remember, each gamete must have ONE COPY of the two genes
- To find possible gametes for each parent, use the FOIL method

$$
-(x+\underbrace{3)(x+4)}=
$$

Homozygous X Homozygous

Possible Gametes:

HG
HG
HG
HG

Possible Gametes:

hg
hg
hg
hg

Homozygous x Homozygous

Parent Genotypes: HHGG x hhgg

HG HG HG HG

Offspring Ratios -Genotype: 100% HhGg	hg hg	HhGg	HhGg	HhGg	HhGg
		HhGg	HhGg	HhGg	HhGg
-Phenotype: 100\% Tall + Green	hg	HhGg	HhGg	HhGg	HhGg
	hg	HhGg	HhGg	HhGg	HhGg

Another Example: Heterozygous x Heterozygous

- Parent 2: H h G g

Possible Gametes:
HG
Hg
hG
hg
Possible Gametes:
HG
Hg
hG
hg

Heterozygous x Heterozygous

Parent Genotypes: HhGg x HhGg

Offspring Ratios	HG	HG	Hg	hG	hg
		HHGG	HHGg	HhGG	HhGg
-Genotype: too complicated!	Hg	HHGg	HHgg	HhGg	Hhgg
-Phenotype: Next Slide!	hG	HhGG	HhGg	hhGG	hhGg
	hg	HhGg	Hhgg	hhGg	hhgg

Another Example: Heterozygous x Heterozygous
Parent Genotypes: HhGg x HhGg
Phenotype:

9: 3: 3:1	HG	H	hG	hg
9 Tall, Green	HHGG	HHGg	HhGG	HhGg
, Yellow Hg	HHGg	HHgg	HhGg	Hhgg
3 Short, Green hG	HhGG	HhGg	hhGG	hhc
1 Short, Yellow hg	HhGg	Hhgg	hhGg	hhgg

