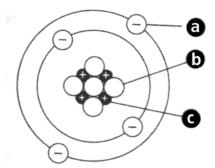
Name: _____ Unit 2 (Biochemistry)

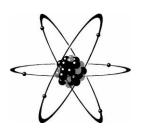

Topic 1: Atomic and Molecular Structure

By the end of this topic, you should be able to...

- Label an atom and it's subatomic particles
- Identify the charge of each subatomic particle
- Differentiate between different types of bonds (covalent & ionic)
- Explain the similarities and differences between the following terms: atom, ion, element, compound, molecule
- List the six main elements in living things

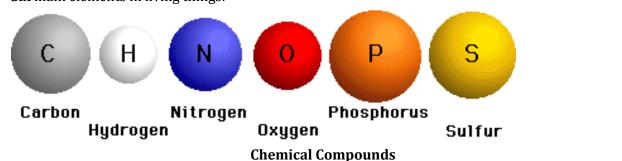
Atoms

- What is an atom?
 - Basic unit of ______
 - Smallest particle of an element that contains all properties of that element
- Subatomic Particles: While an atom is the smallest unit of matter, it is made of even smaller components (subatomic particles)
 - Proton: ______ charge (__); located in the ______ of atom
 - Neutron: ______ charge (__); in the _____ of atom
 - Electron: ______charge (__); surrounds ______ of atom
- Label the Following Atom:


Neutrons	Protons	Electrons	
-Atoms of the same element may	-Atoms of the same element MUST	-Electrons are negatively charged	
have different numbers of neutrons	all have the same number of	subatomic particles that surround	
(In this case, we are looking at	protons in the nucleus of the	the nucleus of an atom	
of that element)	element	-Little to no mass (negligible, not	
-Isotope: each of two or more forms	-The number of protons is also	included in atomic mass)	
of the same element that contain	equal to the	-Travel at high speeds around the	
	-The number of protons is balanced	nucleus	
in their nuclei, and hence differ in	by the number of	-Play a large role in chemical	
atomic mass but not in chemical		bonding	
properties (in particular, a			
radioactive form of an element)			
Periodic Table Information:	→ 1	H <	

- Atomic number = # of protons
- Atomic mass = # of _____ plus # of _____ (add together everything found in the _____)

Hydrogen


____)

- Protons & neutrons each have a mass of 1 amu (____
- Mass of electrons is negligible, so we do not add that in

Name: _____ Unit 2 (Biochemistry) Elements

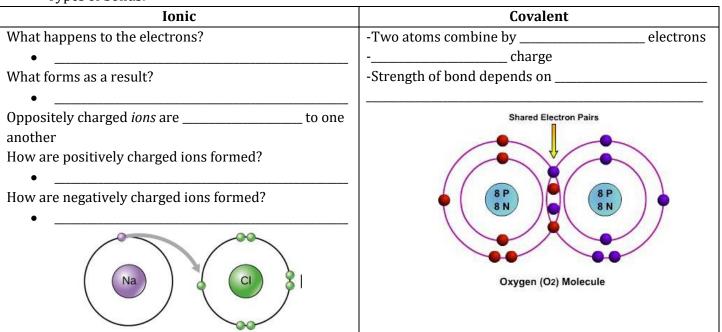
- 92 natural elements
- An element is composed of ______
- **Six** main elements in living things:

- Atoms are the _____
- Elements are made of atoms of one type
- Compounds are formed by the ______
 - $\circ~$ Compounds are chemically joined, so they differ from the elements that they are made of (H_2O is very different than hydrogen and oxygen on their own)
 - Chemical formulas are used to show the _____ and _____ of atoms of each element in the compound

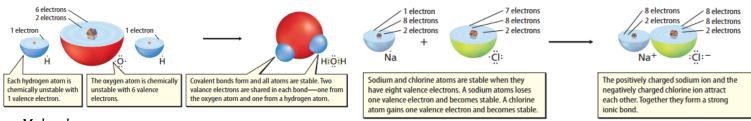
coefficients

reactants

 $2H_2 + O_2 \rightarrow 2H_2O$


products

Chemical Formulas


- Subscript ______ a symbol tell the number of atoms of each element
- H₂O has 2 atoms of hydrogen & 1 atom of oxygen
- Coefficients ______ a formula tell the number of molecules
 30₂ represents 3 molecules of oxygen or (3x2) or 6 atoms of oxygen

Chemical Bonds

- Atoms in a compound are held together by chemical bonds
 - The electrons in the outermost shell that are used to form these bonds are called
- Types of bonds:

Name: _____ Unit 2 (Biochemistry)

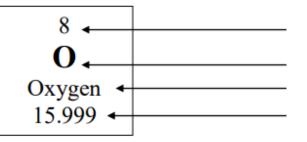
Molecules

- Atom smallest unit of matter
- Element made of one type of atom
- Compound two or more elements chemically bonded together

_____ joined together chemically

All compounds are molecules, but not all molecules are compounds

Van der waals Forces


Molecule –

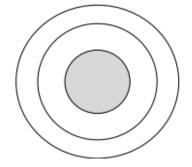
• When molecules are close together, a slight attraction can develop between the oppositely charged regions of nearby molecules.

[[Language Target for Topic 1: I can draw and label an atom, identifying the key subatomic particles and their charge; I can compare and contrast covalent and ionic bonds; I can list the six main elements in living things.]]

Part 1:

- 1. Draw five protons in the nucleus of the atom. Label them with their charge.
- 2. Draw six neutrons in the nucleus of the atom.
- 3. Draw two electrons in the first energy level and label them with their charge.
- 4. Draw three electrons in the second energy level and label them with their charge.
- 5. What element is represented by the diagram?
- 6. Label the information provided in the periodic table.

7. What does the atomic number represent? or


8. What does the atomic mass represent?

Part 2:

- 1. Define ionic bond and explain what an ion is: _____
 - a. How does a positive ion form? ____
 - b. How does a negative ion form?
- 2. Define covalent bond: _____

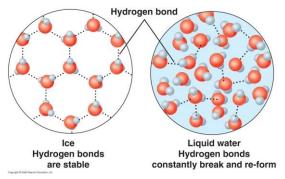
Part 3:

1. List the six main elements in living things: ______

OPHS	Biology Name:
	Unit 2 (Biochemistry)
-	: Properties of Water
	nd of this topic, you should be able to plain what "water is polar" means
	plain the importance of hydrogen bonds in water
	t the properties of water
	scuss the pH scale and identify substances as acids, bases, or neutral
	Properties of Water
•	Water is not alive, but understanding water is essential
	• $\sim 2/3$ the mass of a cell is water
	Most life-sustaining reactions take place in
•	Water, H ₂ O, is a molecule made of covalently bonded to
Pol	arity Partial negative charge
•	Electrons are distributed in a molecule of water Electrons are δ^-
	Leads to positive end and negative end (opposites attract!)
•	The atom with more protons,(8), pulls electrons closer to
	its nucleus
	This makes oxygen slightly & hydrogen slightly H
•	Molecules of water are attracted to one another and form hydrogen bonds
	Opposites
	• Fach molecule of water can make up to
	n Urdragen hande ere
٨db	esion & Cohesion
<u>nun</u>	Adhesion: attraction between molecules (water to a
-	Autreston. attraction between molecules (water to a
•	Cohesion: attraction between molecules (water to
•	
	Results in surface tension (measure of the
•	Produces a, allowing insects to
•	Cohesion (water sticking to water) and adhesion (water sticking to other
-	substances) work together to form capillary action
Deallif	Water Adhesion E example: water is absorbed by the roots of plants and travels upward!
<u>011</u>	iversal Solvent Universal solvent: water dissolves more substances than any other liquid
•	
	Again, because water is and has hydrogen with ends and oxygen
	with ends, water many other substances and is able to dissolve these substances it attracts
	General rule:, so being polar, water dissolves
	other substances
	• It cannot dissolve nonpolar substances, like ons:
•	Solute: substance that is(sugar)
•	Solvent: substance that(H ₂ O)
•	Mixture: combination of substances in which individual substances
	retain their own properties (sand + sugar)
•	Solution: mixture of 2+ substances in which the molecules of these substances are evenly distributed
	(sugar water)

Name: _

Unit 2 (Biochemistry)


• Suspension: no dissolving occurs, but one substance separates into small pieces and remains suspended

Pure Water has a pH of 7

•	pH: measure of how a solution is	Ba	^	ł
	Scale ranges from	Battery L Acid	-	
•	Acid: H+ (hydrogen ions) form in water; pH is	Juice	2 40	?
	• The the pH (when under 7), the the acid			5
•	Base: OH- (hydroxide ions) form in water; pH is	ne	- -	
	• The the pH (when above 7), the the base	Rain	6	
•	Neutral: pH is	Distilled Water	 7	5
<u>Densit</u>	<u>ty of Water</u>		8	1
•	Water is form (ice) than its	Baking Soda	o	
	form	Soft Soap	10	I
	• The orientation of hydrogen bonds pushes the molecules to push further apart, lowering the density	Ammon	11 12	00010

- Because ice is less dense, it ______ on liquid water
- Lye If water was most dense at the freezing point, then in winter the very cold water ٠ at the surface of lakes would sink, the lake could freeze from the bottom up, and all life in them would be killed. And, with water being such a good insulator (due to its heat capacity), some frozen

lakes might not totally thaw in summer.

Heat Capacity/Specific Heat

- Water absorbs a lot of heat from the air without having a large temperature change
- Lakes and oceans often air temperatures ٠
- Water absorbs heat when it cools, which is why sweating helps us cool down
- It takes a lot of heat to change the temperature of water because the hydrogen bonds between the water • need to be broken!

Name: _____ Unit 2 (Biochemistry)

[[Language Target for Topic 2: I can relate the properties of oxygen and hydrogen to the polarity of water; I can explain how water's polarity and hydrogen bonding give it unique properties and differentiate between the listed properties of water; I can draw and label a pH scale with acid, base, and neutral.]]

Part 1:

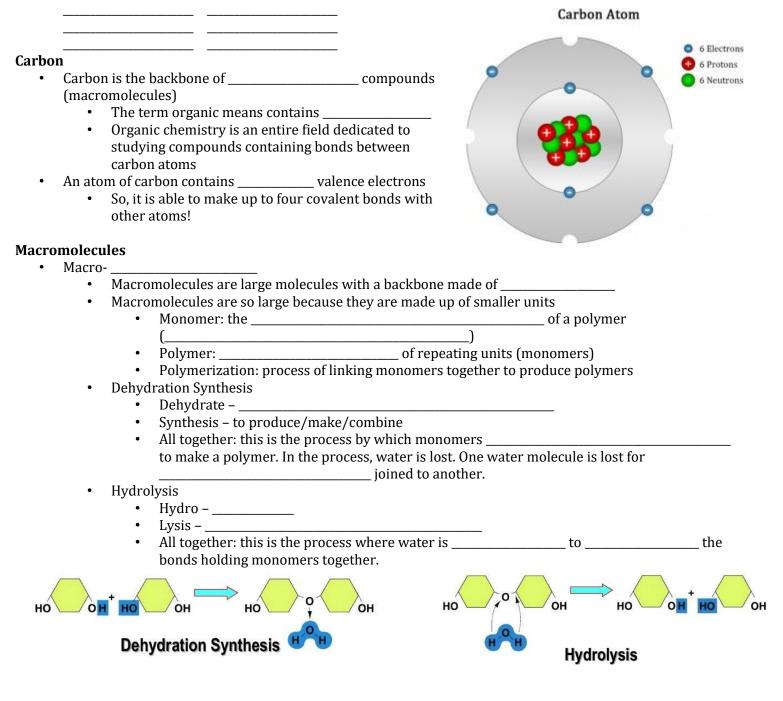
1. Draw and label a molecule of water. Explain how many atoms are in a single molecule of water and what bonds hold these atoms together, being sure to use the term polar in your response.

Part 2:

- 1. Explain how molecules of water stick together: _____
- 2. Choose three properties of water and illustrate/explain them:

Part 3:

1. Draw and label a pH scale, giving at least one example of an acid/base/neutral substance.

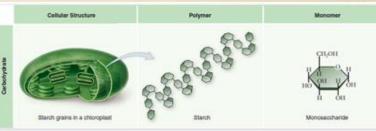

Name: _____ Unit 2 (Biochemistry)

Topic 3: Macromolecules

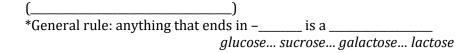
By the end of this topic, you should be able to...

- Explain what the term "organic" means
- Define monomer and polymer and explain how polymers are made/broken
- Explain what happens to molecules during the processes of hydrolysis and dehydration synthesis
- Identify the monomer for each class of organic compounds
- Identify which class of organic compounds a compound falls into when given an image or function or elements used
- Explain the function of each of the four classes of organic compounds

Revisit: What are the six main elements in living things?

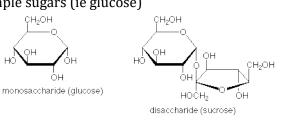

Name: ____

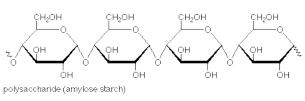
Unit 2 (Biochemistry)


ORGANIC COMPOUNDS: Macromolecules

Four classes: carbohydrates, lipids, nucleic acids, and proteins I. Carbohydrates

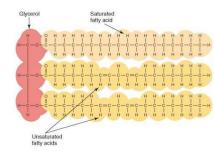
- Carbohydrates are _____
 - Carbo
 - Hydrate _____ So, carbohydrates are made of: carbon, hydrogen, and oxygen (1:2:1 ratio)
- Function:

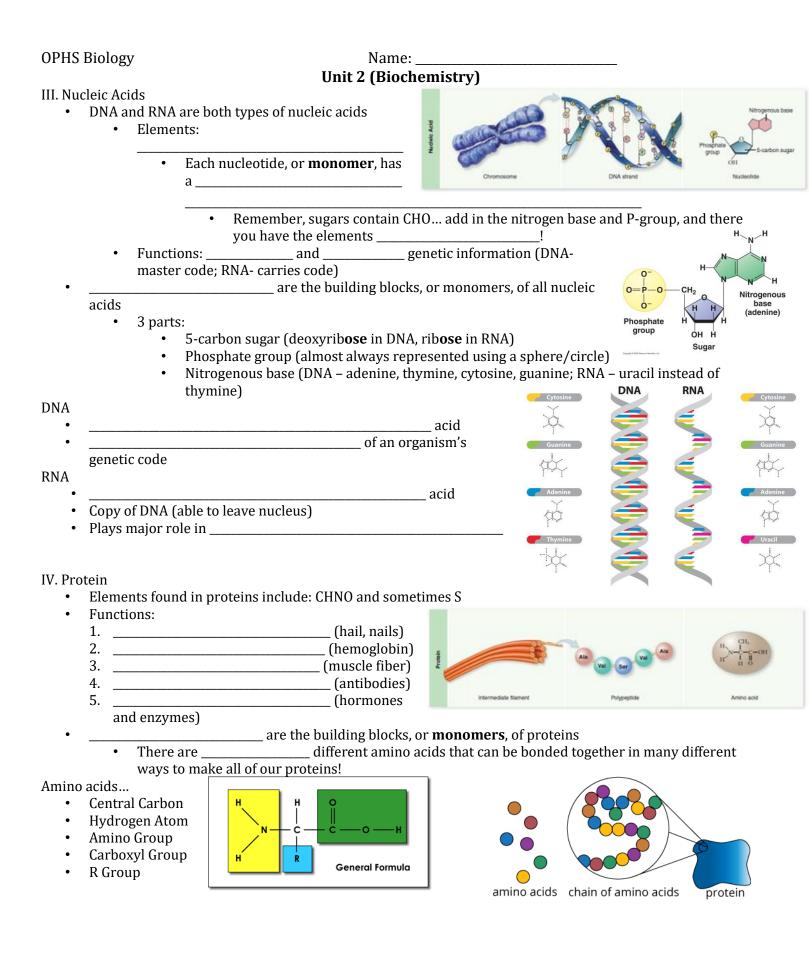



; maintain plant structure

: **monomer** of carbohydrates; simple sugars (ie glucose)

- Mono _____
- Saccharide _____
- Disaccharide: _____ monosaccharides bonded together (ie sucrose)
 - Di –
- Polysaccharide: carbohydrate polymer (many sugars joined together in a chain)
 - Importance of polysaccharides: store energy (short term)
 - Examples:
 - Starch: food storage in _____ (think potatoes!)
 - Glycogen: food storage in _____ (us!)
 - Cellulose: ______ in plants

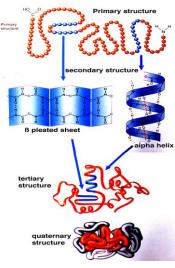



II. Lipids

- Lipids include _____
 - Elements: like carbohydrates, these are composed of carbon, hydrogen, and oxygen
 - There are very few oxygen, and there is not a set ratio like in carbs
 - Functions: ______, insulation, and protective coatings (think waxy layers of plants)
 - <u>*L*</u>ipids: <u>*L*</u>ong term energy storage *Steroids often carry chemical messages
- Unlike the other classes of organic compounds, lipids do not have a "true" monomer. However, the structure between lipids is fairly consistent:

- TRIGLYCERIDE!
- Saturated: ______ at room temperature (butter or coconut oil)

 Only ______ bonds between the carbons on the fatty
 - acid tails
- "saturated" with ______ atoms Unsaturated: ______ at room temperature (vegetable or
- canola oil)
 - At least one ______ bond in the fatty acid chain
 - Monounsaturated fat: only one double bond
 - Polyunsaturated fat: 2+ double bonds in structure



Name: _____ Unit 2 (Biochemistry)

bonds

Polypeptide: a chain of amino acids linked together (polymer)

- Amino acids are connected through ____
- Proteins are made of polypeptides folded into complex structures
- Four levels of protein structure:
 - 1. Primary
 - 2. Secondary
 - 3. Tertiary
 - 4. Quaternary

[[Language Target for Topic 3: I can identify an organic compound as one containing carbon; I can create a table identifying the function, structure, polymers, and monomers for each of the four classes of macromolecules.]]

Part 1:

- 1. Define the term "organic," and provide examples of organic compounds: Organic means containing
 - _____. The four classes of organic compounds are ______,

_____, ____, ____, _____, and ______,

Part 2: Complete the table:

	Function	Structure	Polymer	Monomer
Carbohydrate				
Lipid				
Nucleic Acid				
Protein				

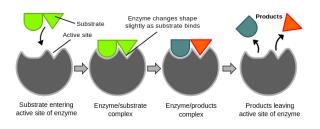
Name: _____ Unit 2 (Biochemistry)

Topic 4: Enzymes

By the end of this topic, students should be able to...

- Identify the components of a chemical reaction (products and reactants/substrates)
- Construct a graph detailing enzyme reaction data
- Describe the function of an enzyme
- Explain the importance of shapes in active sites on an enzyme
- Explain how enzymes speed up chemical reactions (act as biological catalysts)

Why Study Chemistry in Biology?


- In order to understand how an organism functions, we need to understand the reactions that take place in that organism.
 - Growth, response to stimuli, sensing, taking medicine to control regulation... all of this is chemistry!

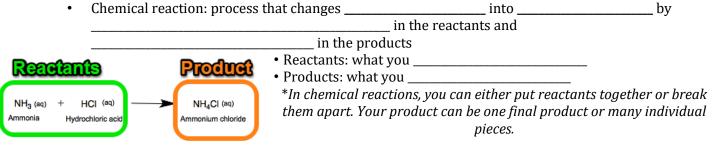
Enzymes

- Enzymes are ______ that act as biological
 - _____. (often end in –_____)
 - Living things produce enzymes to act as catalysts

Catalysts _____

Catalysts ______ during a reaction... so they can be used over & over again *unless* their _____

Metabolism


Organic Macromolecules carbohydrates

click for next

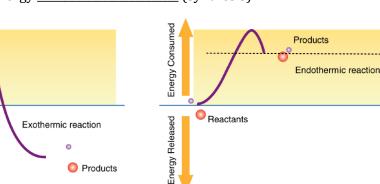
lipids nucleic acids catabolic reactions

Chemical Reactions

To understand how enzymes speed up chemical reactions, we need to know what chemical reactions are.

Energy in Reactions

Energy Consumed


Energy Released

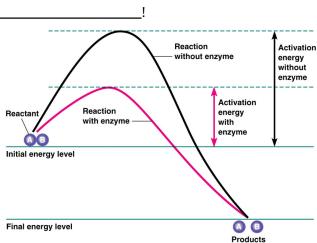
Reactants

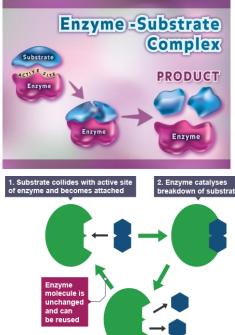
- Metabolic pathways: product from one reaction is the ______ (reactant) for the next
- Metabolic pathways: product from one reaction is the ____
- Catabolism: chemical reactions where complex molecules are ______ into simpler molecules
- Usually _______ to drive these reactions
 Anabolism: chemical reactions where simpler molecules are to form more complex molecules

Exothermic: energy ______ (digestion)
Endothermic: energy ______ (synthesis)

Name: **Unit 2 (Biochemistry)**

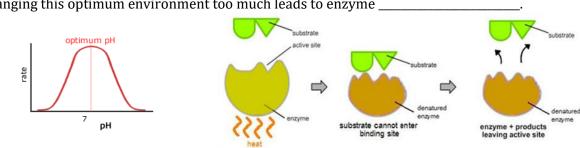
Role of Enzymes


•


٠

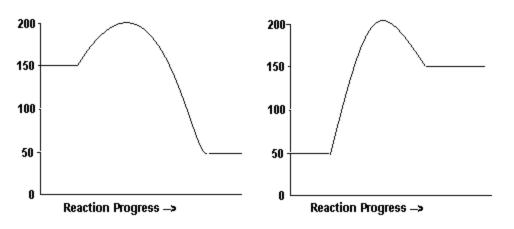
٠

•


- The role of enzymes is to _____
- Activation energy: the amount of energy required to ______ a reaction In biology, we like to say "_____ So, the form (shape) of an enzyme impacts its role. Reactant Enzymes are Ae . They Initial energy level only work with certain substrates. These substrates must _____ into the of the enzyme. Final energy level Each enzyme has a place called the "active site." This is where the substrate(s) (reactants) bind to the enzyme. Once the substrate(s) has connected itself with the enzyme, the reaction takes place. The substrate(s) into the active site of the enzyme (lock & key model or induced fit). • **Enzyme-Substrate Complex!** Once the reaction is complete, the enzyme releases the product(s) of the reaction. What happens if enzymes change shape? We call this a "_____ _____ enzyme/protein. When the shape changes, the substrate(s) will _____ in the active site, so the enzyme will no longer function. The organism needs to get rid of this enzyme. Enzymes work best in certain Changing this optimum environment too much leads to enzyme ____

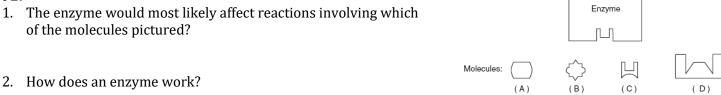
3. Products released from active site

ranges. The best pH or temperature is said to be

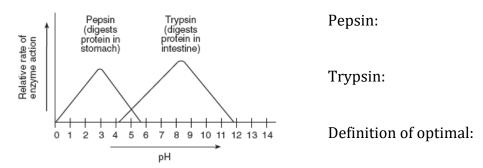


Name: _____ Unit 2 (Biochemistry)

[[Language Target for Topic 4: I can construct an appropriate graph for enzyme reaction data and explain the role of enzymes on the reaction rates; I can explain the importance of enzymes and their role in reactions to a peer.]]


Part 1:

1. On the graph below, identify the products, reactants, activation energy, and amount of energy released/absorbed. Calculate the Activation Energy of each and identify it as endo- or exo- thermic.



On each graph above, sketch what the curve would look like if an enzyme was used.

Part 2:

3. What is the optimal pH for both enzymes?

4. Compare, using the pepsin and trypsin graph above, the rate of the pepsin-catalyzed reaction at pH of 3 with the rate of the trypsin-catalyzed reaction at pH of 3.