Unit 2 Topic 3: Macromolecules

• By the end of this topic, you will be able to...

- 1. Explain what the term "organic" means
- 2. Define monomer and polymer and explain how polymers are made/broken
- 3. Explain what happens to molecules during the processes of hydrolysis and dehydration synthesis
- 4. Identify the monomer for each class of organic compounds
- 5. Identify which class of organic compounds a compound falls into when given an image or function or elements used
- 6. Explain the function of each of the four classes of organic compounds

Elements in Living Things

• Recap: what are the six main elements in living things?

Macromolecules- Notice the Elements!

Carbon

- Carbon is the backbone of organic compounds (macromolecules)
 - The term organic means contains carbon
 - Organic chemistry is an entire field dedicated to studying compounds containing bonds between carbon atoms
- An atom of carbon contains FOUR valence electrons
 - So, it is able to make up to four covalent bonds with other atoms!

Organic Compounds

 Look at the compounds to the right. Notice how the carbon are responsible for essentially holding the molecules together.

Macromolecules

- Macro-large
 - Macromolecules are large molecules with a backbone made of carbon
 - Macromolecules are so large because they are made up of smaller units
 - Monomer: the building block of a polymer (repeating unit)
 - Polymer: long chain of repeating units (monomers)
 - Polymerization: process of linking monomers together to produce polymers

Making & Breaking Polymer

Dehydration Synthesis

• Dehydration Synthesis

- Dehydrate loss of water
- Synthesis to produce/make/combine
 - All together: this is the process by which monomers join together to make a polymer. In the process, water is lost. One water molecule is lost for every monomer joined to another.
- Hydrolysis
 - Hydro water
 - Lysis to break or to burst
 - All together: this is the process where water is added to break the bonds holding monomers together.

Comparing the two:

One more time...

What are we building through dehydration synthesis?

Our macromolecules!

- Four classes:
 - Carbohydrates
 - Lipids
 - Nucleic acids
 - Proteins

Carbohydrates

- Carbohydrates are sugars
 - Carbo carbon
 - Hydrate water

- So, carbohydrates are made of : carbon, hydrogen, and oxygen (1:2:1 ratio)
- Function: **short term** energy storage; maintain plant structure (cellulose)
- *General rule: anything that ends in -ose is a sugar
 - glucose... sucrose... galactose... lactose

Carbohydrates, cont.

- Monosaccharide: monomer of carbohydrates; simple sugars (ie glucose)
 - Mono 1
 - Saccharide sugar
- Disaccharide: two monosaccharides bonded together (ie sucrose)
 - Di 2
- Polysaccharide: carbohydrate polymer (many sugars joined together in a chain)

polysaccharide (amylose starch)

Importance of Polysaccharides

- Store energy (short term)
- Examples:
 - Starch: food storage in plants (think potatoes!)
 - Glycogen: food storage in animals (us!)
 - Cellulose: cell walls in plants

 Flip to the table in your notes at the end of topic 3 – complete the portion of the table dealing with carbohydrates

	Function	Structure	Polymer	Monomer
ate				
dro				
, Ч				
p Q				
ar				
U				

	Function	Structure	Polymer	Monomer
	SHORT term	RINGED!	poly-	Mono-
	energy	CHO in a	saccharide	saccharide
	storage;	1:2:1 ratio	(like starch,	(glucose;
ate	maintain	сн₂он о	glycogen,	single-
dre	structure	но он	cellulose)	ringed
, ho	(cellulose	ОН		sugar)
rba	makes up cell	monosaccharide (glucose)		
Ŭ	walls in plants)			

Lipids

- Lipids include fats, oils, waxes, and steroids
 - Elements: like carbohydrates, these are composed of carbon, hydrogen, and oxygen
 - There are very few oxygen, and there is not a set ratio like in carbs
 - Functions: long-term energy storage, insulation, and protective coatings (think waxy layers of plants)
 - Lipids: Long term energy storage

*Steroids often carry chemical messages

Lipids, cont.

- Unlike the other classes of organic compounds, lipids do not have a "true" monomer. However, the structure between lipids is fairly consistent:
 - 3 fatty acids + 1 glycerol
 - TRIGLYCERIDE!
 - Saturated v unsaturated: Next slide!

Saturated and Unsaturated Fats

• Saturated: solid at room temperature (butter or coconut oil)

- Only single bonds between the carbons on the fatty acid tails
 - "saturated" with hydrogen atoms
- Unsaturated: liquid at room temperature (vegetable or canola oil)
 - At least one double bond in the fatty acid chain
 - Monounsaturated fat: only one double bond
 - Polyunsaturated fat: 2+ double bonds in structure

 Flip to the table in your notes at the end of topic 3 – complete the portion of the table dealing with lipids

Function	Structure	Polymer	Monomer
	Function	Function Structure	Function Structure Polymer Image: Polymer information of the structure informatio of the structure inform of the structure i

	Function	Structure	Polymer	Monomer
	LONG term	Cap. Letter E;	Fats, oils,	Technically,
	energy	CHO (not in a	waxes,	not one in
	storage;	specific ratio)	steroids	specific
	insulation;			for us, we
	waxy			are saying
	(protective)			a
	coating (like			triglyceride
	cuticle)			(1 glycerol
id				+ 3 fatty
Li d				acids)

Nucleic Acid

DNA and RNA are both types of nucleic acids

• Elements: CHNOP

pyramidines, phosphate-group, nitrogen-base, NADH NUCLEOTIDES, adenine, NUCLEOTIDES, ATP, NUCLEIC-ACIDS deoxyribose-sugar, RNA, purines, DNA, ribose-sugar, thymine, nucleosides, guanine, cytosine,

- Each nucleotide, or monomer, has a 5-C sugar, phosphate group, and nitrogenous base
 - Remember, sugars contain CHO... add in the N base and P-group, and there you have the elements CHNOP!
- Functions: store and transmit genetic information (DNA- master code; RNA- carries code)

Nucleic Acid, cont.

- Nucleotides are the building blocks, or monomers, of all nucleic acids
 - 3 parts:
 - 1. 5-carbon sugar (deoxyrib**ose** in DNA, rib**ose** in RNA)
 - 2. Phosphate group (almost always represented using a sphere/circle)
 - Nitrogenous base (DNA adenine, thymine, cytosine, guanine; RNA uracil instead of thymine)
 H _ H

DNA & RNA

DNA

- Deoxyribonucleic acid
- Master copy of an organism's genetic code

RNA

- Ribonucleic acid
- Copy of DNA (able to leave nucleus)
- Plays major role in protein synthesis

 Flip to the table in your notes at the end of topic 3 – complete the portion of the table dealing with nucleic acids

	Function	Structure	Polymer	Monomer
<u>.</u>				
A C				
<u> </u>				
Z				

	Function	Structure	Polymer	Monomer
	Carry/transmit	DNA: double	DNA or	Nucleotide
	genetic code	helix (held	RNA	(5-C central
		together by		sugar with
		hydrogen		D
		bonds)		phosphate
				group on
<u></u>				one end
AC				and
<u>.</u>				nitrogenous
\square				

Protein

- Elements found in proteins include:
 - CHNO and sometimes S
- Functions:
- 1. Structure (hail, nails)
- 2. Transportation (hemoglobin in blood)
- 3. Movement (muscle fiber)
- 4. Defense (antibodies)
- 5. Regulation (hormones and enzymes)

Protein, cont.

- Amino acids are the building blocks, or monomers, of proteins
 - There are 20 different amino acids that can be bonded together in many different ways to make all of our proteins!
- Amino acids...
- Central Carbon
- Hydrogen Atom
- Amino Group
- Carboxyl Group
- R Group

Another View

Protein

• Polypeptide: a chain of amino acids linked together (polymer)

- Amino acids are connected through peptide bonds
- Proteins are made of polypeptides folded into complex structures

Protein Structure

Four levels of protein structure:

- 1. Primary
- 2. Secondary
- 3. Tertiary
- 4. Quaternary

Structures, cont

 Flip to the table in your notes at the end of topic 3 – complete the portion of the table dealing with proteins

	Function	Structure	Polymer	Monomer
in				
ote				
P				

AA structure: central carbon with hydrogen atom/ amino group/ carboxyl group/ R group

	Function	Structure	Polymer	Monomer
	SO many	4 different	Polypeptid	Amino
	things –	structural	е	Acids (the
	structure,	tiers: primary,	(enzymes,	order of the
	transportation	secondary,	hemoglobi	amino
	, defense,	tertiary,	n,	acids
	movement,	quaternary	antibodies,	determines
<u> </u>	regulation		keratin)	function of
otei	(DNA carries			protein)
Pro	instructions)			

AA structure: central carbon with hydrogen atom/ amino group/ carboxyl group/ R group