

Two Strategies for Obtaining Nutrients

- Autotrophs (auto = self; troph = referring to nutrients)
 Definition: ______
 Example Organisms: ______
- Heterotrophs (hetero = different) Definition:

Example Organisms: _____

Photosynthesis:			
Happens In:			
Goal:	Convert	into	(glucose)
More Information:	Provide the cher CH_2OH H H H H H H H	mical formula of glucose (a carb *What is the function of carbohy	ohydrate): drates?*

Show the Photosynthesis Equation using words. Circle the reactants and box the products.

Show the **Photosynthesis Equation** using <u>chemical formulas</u>. Circle the reactants and box the products.

Why are there numbers (coefficients) in front of some of the molecules?

Name: _____

Unit 4 (Cell Energy) Cellular Respiration

Happens In:	AND()
Goal:	Convert into
More Information:	Provide the full name and structure of ATP
	Why is ATP used as the energy storage molecule?
ade high-energy bond	Explain how ATP is broken into ADP (Adenosine Diphosphate) and P (Phosphate)
ATP	

Show the **Cellular Respiration** equation using words. Circle the reactants and box the products.

Show the **Cellular Respiration** equation using chemical formulas. Circle the reactants and box the products.

Explain how the photosynthesis and cellular respiration equations **relate** to one another in the space below:

OPHS E	Biology Name:	
	Unit 4 (Cell Energy)	
Photo	synthesis	
٠	Where on the plant does photosynthesis take place? What are stomata ?	
	Photosynthesis Location:	
	Stomata:	
•	Where in the cell does photosynthesis take place?	
	Organelle:	
•	What are the two main processes involved in photosynthesis?	
	1	
	2	

Chloroplasts

Part 1: Light Reactions

Purpose	
Location in Organelle	
Requirements for process to occur	

**what is NADP+?_____

How does NADP+ get converted to NADPH (electron carrier)?

Reactants for Light Reactions:

Products from Light Reactions:

OPHS Biology

Unit 4 (Cell Energy)

Part 2: Calvin Cycle

Purpose	Produce from CO ₂
Location in Organelle	
0	
Requirements for process to occur	
Does not require light directly, but does need	
products from light reactions!	

Reactants for Calvin Cycle:

Products from Calvin Cycle:

How are **excited electrons and ATP** from the light reactions used in the Calvin Cycle?

What factors affect the **rate (speed)** of photosynthesis? *Explain how these factors play a role.*

Name: _____

Unit 4 (Cell Energy)

Name:

[[Language Targets for Topic 1: I can compare and contrast ATP and ADP molecules; I can write the main purpose of photosynthesis in living organisms; I can describe photosynthesis in detail with the associated sub processes using proper vocabulary terms; I can write the equation for photosynthesis in words and chemical symbols; I can label the parts of a chloroplast on a diagram; I can differentiate between and provide examples of autotrophs and heterotrophs; I can create a flow chart to diagram the processes of photosynthesis and cellular respiration to show the interrelatedness.]]

- 1. How are ATP and ADP similar? Discuss what they are made of:
- 2. How are they different?

- 3. Which one contains energy the cell can use? _____
- 4. Not all organisms undergo the process of photosynthesis, but all organisms rely on what is produced in this series of chemical reactions. In autotrophs, what is the purpose of photosynthesis?
- 6. Label the chloroplast diagram AND illustrate the entire process of photosynthesis (outlining both the light reactions and the light independent reactions):

Which components make up the light reactions?

Which components make up the light independent reactions?

Unit 4 (Cell Energy)

Unit 4 Topic 2: Cellular Respiration

By the end of this topic, you should be able to...

- Describe the purpose of cellular respiration in living organisms
- Compare and contrast glycolysis, Kreb's Cycle, and the electron transport chain
- Summarize the reactants and products of the cellular respiration reaction in words and chemical formulas
- Describe the structure of the mitochondria

Cellular Respiration: the process through which cells obtain <u>usable</u> energy (ATP)

Equation: Glucose $(C_6H_{12}O_6)$ + Oxygen $(6O_2) \rightarrow$ ATP + Carbon Dioxide $(6CO_2)$ + Water $(6H_2O)$

- Where does this process take place in *eu*karyotes? ______
- Where does this process take place in *prokaryotes*? ______
- The goal of cellular respiration is to produce ______ from ______
- What are the three main processes that take place in cell respiration?
 - 1. _____
 - 2. ______ 3.
- ATP (Adenosine *Tri*phosphate)

The Mitochondria

Notice the folds of the inner membrane. Why are these folds important?

The three steps of cellular respiration and where they take place:		
Process	Location	

Name: _____

Unit 4 (Cell Energy) Two Types of Respiration

Aerobic	Anaerob	vic	
With	Without		
Makes of ATP	Makes AT	'P	
Includes all three processes	Includes		
		GLYCOLYSIS]
Aerobic Cellular Respirat	ion	Glucose	
Part I: Glycolysis		2 ATP	
Purpose: Break down into two smaller mol	Purpose: Break down into two smaller molecules called		
(3C) and send electrons to the Elect	tron Transport Chain (ETC)		
Occurs in: Aerobic AND anaerobic respiration			®
Location: of cell			Ð
Reactants:		B B B B B B B B B B B B B B B B B B B	P
Products:, (electron carr	rier), and (4 are		
produced, but 2 were used to start the process so the	gain is TWO molecules)		-2 ADP
			2 ATP
Part II: Kreb's Cycle (aka Citric Acid Cycle)		Pyruvate 🤐	
Purpose : Pyruvate (3C) is broken down into, and	electrons are sent to the ETC	4 ATP formed - 2 ATP used Glucose 2	NAD+ + 4e- + 4H+
(via electron carriers)		2 2 ATP 2 Pyruvate + H ₂ O	2 NADH + 2H*
Occurs in: respiration	ONLY	Krebs Cycl	е
Location: (of mitochondria))	(Citric Acid Cy	rcle)
Reactants: (and CoA/coenzyme	A)	Pyruvic acid	
Products: (electron carrier),	, and (waste)		H
		Acetyl-CoA	
Part III: Electron Transport Chain (ETC)			
Purpose: Electrons (e-) from are passed to the FINAL electron acceptor, (ac)			
, to produce			
The enzyme ATP synthase is important here as it is responsible for producing			
large amounts of ATP		• C02 -	
Occurs in: respiration ONLY			NADH
Location: (mitochondria- remember, the folds increase			
surface area)		ATP	
Reactants:		Inner ORO	
Products:(waste),	Glycolysis (velocity and oxidative provide the second statistics)	mitochondrial membrane	3

Energy Yield

Glycolysis	ATP	
Kreb's Cycle	ATP	
ETC	ATP	
TOTAL # ATP:		

OPHS Biology Name: Unit 4 (Cell Energy) All of this ATP is produced during **AEROBIC** cellular respiration. However, sometimes there is not enough **Electrons** carried Electrons carried via NADH via NADH and oxygen to carry out this process. When that happens, FADH, cellular respiration occurs in the absence of oxygen (think about when you work out and you develop cramps!). This ELECTRON TRANSPORT CHAIN AND OXIDATIVE PHOSPHORYLATION GLYCOLYSIS KREBS is called anaerobic cellular respiration, or fermentation. Glucose CYTOSOL MITOCHONDRION ATP ATP ATE (oxidative (substrate-level (substrate-level phosphorylation phosphorylation) phosphorylation) **Anaerobic Respiration (fermentation)** _ only (occurs where in the cell? _____) . Occurs in the absence of _____ . Goal: break _____ down • Produce ______ fewer ATP than in aerobic respiration Two types: ______ and _____ **Lactic Acid Fermentation** Lactic Acid 2 ATP 2 ADP + 2 PFermentation Happens in : _____ • Glycolysis

H

- What is produced in addition to ATP?
- Examples in everyday life: muscle cells during • exercise, yogurt, pickles

Alcoholic Fermentation

- Happens in: _____ •
- Produces _____, • and ATP
- Examples in everyday life: yeast (causes ٠ bread to rise)

Unit 4 (Cell Energy)

Name: _

[[Language Targets for Topic 2: I can write the main purpose of cellular respiration in living organisms; I can describe cellular respiration in detail with the associated sub processes using proper vocabulary terms; I can write the equation for cellular respiration in words and chemical symbols; I can label the parts of a mitochondria on a diagram; I can create a flow chart to diagram the processes of photosynthesis and cellular respiration to show the interrelatedness.]]

- 1. Unlike photosynthesis (where not all organisms carry out the process), ALL organisms undergo cellular respiration. Why? Include the purpose of cellular respiration in your response:
- Provide the equation for cellular respiration in both ways (words & chemical formula): Words:
 - Equation: ____
- 3. Label the missing components (A-E) in the mitochondria diagram AND highlight the steps of cellular respiration by including the number of ATP molecules

produced in each step:

4. Complete the flowchart linking this

unit together: **Word Bank:** Mitochondria, Chloroplast, Photosynthesis, Cellular Respiration, Solar Energy (SUN), ATP, $6CO_2$, $6CO_2$, $6H_2O$, $6H_2O$, $C_6H_{12}O_6$, $6O_2$

CELL ENERGY CHART

