Unit 7, Topic 1: Mendel and Basic Crosses

Name:

Genetics

By the end of this topic, you should be able to ...

- 1. Use basic genetic vocabulary (genotype, phenotype, homozygous, heterozygous, dominant, recessive)
- 2. Describe the experiments of Gregor Mendel and the laws he established
- 3. Produce and analyze Punnett squares for basic monohybrid crosses

Important Genetics Vocabulary:

- <u>Genetics</u> the study of ____
- <u>Trait</u> specific characteristic that can be passed from parent to offspring (*hair color, flower color, seed pod*)

yright © 2012 University of Washington

- <u>Gene</u> ______ found on the DNA that determines a trait (*section of DNA that codes for a protein/trait*)
- <u>Allele</u> a ______ form of the same gene that specifically designates what that trait will look like (*variation of a gene/trait*)
- Dominant the trait that is visible (seen), always ______ (BB)
- <u>Recessive</u> the trait that is sometimes hidden (not seen) when paired with a dominant trait. Only visible (seen) when there are 2 recessive alleles being expressed (bb)
- <u>Homozygous</u>: organisms that have 2 ______ alleles for a particular trait and are called truebreeds (purebred – BB)
- <u>Heterozygous</u>: organisms have 2 ______ alleles for the same trait and are called hybrids (Bb).
- **Genotype:** Refers to the genetic make up of an organism. (Tt, Ss)
- **<u>Phenotype</u>**: Refers to the ______ of an organism. (Tall or short, yellow or green, short tail or long tail)

How are genes inherited?

Humans have _______ of chromosomes for a total of 46 chromosomes. Each parent contributes only

_____ of chromosomes to their child.

- Body cells are diploid. Gametes (sex cells) are haploid.
- When a sperm cell (_____ chromosomes) and an egg cell (_____ chromosomes) join during fertilization, it results in a ______ (___ chromosomes).

Mendelian Genetics

- Gregor Mendel is known as "The Father of Genetics"
- Studied English Pea Plants (1800s) to determine inheritance of traits.

Name: ___

Genetics

- Used self and cross pollination in plants to determine the process of inheritance.
- **Determined Generations:**
 - 1. <u>Parental Generation (purebreds ______</u>: PP or pp genotypes)
 - 2. F1 Generation (hybrids _____

Why Use Pea Plants?

reproduction	traits	
parts on the same flower	Ability to control and fertilization	1

Some terms to know:

- Self-pollinating--sperm cells in pollen fertilize egg cells in the _____ •
- Fertilization--during sexual reproduction, male and female reproductive cells join and produce a new cell.

- Cross pollinated plants with ______ characteristics to see which trait would appear in the F1 hybrid
- Concluded individual factors called genes (that have different forms called alleles) control each trait of a living thing (and one may be dominant over another)

The Law of Dominance (LAW 1)

- Alleles can be either ______ or _____ or _____ (strong or weak)
- alleles are observable • Represented using a _____ letter
 - Recessive alleles are not usually observable, when the dominant allele is present (can still be in genotype) • Represented using a letter
- Each trait requires TWO alleles (the following table examines flower color, with purple being dominant over white):

Genotype	Phenotype	Genotypic Description
AA		
Aa		
аа		

Name: _____ Genetics

2nd set of experiments

- Wanted to know what happened to ______ factors so let F1 hybrids ______pollinate
- Concluded that a dominant allele had covered up (masked) the recessive allele in the F1 generation
- Observed that a recessive allele had ______

The Law of Segregation (LAW 2)

- Alleles for a gene ______ when forming a sperm and egg
 (meiosis)
- There are TWO alleles for each trait (1 in each of the chromosome pairs)
- When eggs and sperm are made, the <u>two alleles are separated from each other</u> (on their respective homologous chromosomes)

Law of Independent Assortment (LAW 3)

- Alleles for different genes are distributed to sperm and egg independently
- Explains why all siblings do not look exactly alike
- Each pair of alleles sorts out independently during gamete formation
- Ex. Brown hair and brown eyes aren't connected
- INDEPENDENT ASSORTMENT: "the random alignment of ______ chromosomes at metaphase plate (Metaphase I)"

What is a Punnett Square ?

- A tool or grid used to ______ and compare the ______ variations that will result in a cross of two organisms traits.
- Probability:
 - Probability predicts average outcome from a LARGE # of events
 - Small # of events not always "accurate"

Dominant and Recessive (T = Tall & t = short

Cross: Tt x Tt

т

TT

Тt

т

t

- Punnett squares are used to predict and compare the genetic variations that result from a cross using the <u>principles of probability</u>
- Ratios:
 - o ¼: fractions
 - 3:1 (dominant phenotype to recessive phenotype)
 - o 1:2:1 (DD: Dd: dd)
- Percentages:
 - o ½ = 50%

Two Types of Punnett Squares

- <u>Monohybrid</u>: A Punnett Square that tests for the inheritance of ______ trait (example: long necks)
- <u>Dihybrid:</u> A Punnett Square that tests for the inheritance of ______ traits (example: long necks and fur color).

Genotypic ratio: 1 : 2 : 1 (TT=25% Tt=50% tt=25%)
Phenotypic ratio: 3 : 1 (Tall=75% Short=25%)

t

Τt

tt

OPHS Biology	Name:
Unit 7 Notes	Genetics
Example 1: Homozygous x Homozygous	
Situation: One parent is homozygous for green poo	ds (GG) and the other parent is homozygous for
yellow pods (gg).	
Parent Genotypes:	
Offspring Ratios	
-Genotype:	
-Phenotype:	
Example 2: Homozygous X Heterozygous	
Situation: One parent is homozygous for green poo	ds, and the other parent is heterozygous.
Parent Genotypes:	
Offspring Ratios	
-Genotype:	
-Phenotype:	
Example 3: Heterozygous X Heterozygous	
Situation: Both parents are heterozygous for pod c	color
Parent Genotypes:	
Offspring Ratios	
-Genotype:	
-Phenotype:	
Test Cross	
Process of crossing an unknown genotype individua	al to a

_ individual to determine what the unknown

genotype is.

Example 4: Testcross

Situation: a green-podded plant with an unknown genotype is crossed with a yellow-podded plant. The offspring genotype ratios are given below.

• Genotype Ratio: 50% Gg, 50% gg

Question: What was the genotype of the parent green-podded plant?

Language Targets for this unit are embedded in the topic practice.

Name: ___

Genetics

Unit 7, Topic 2: Variations of Dominance

By the end of this topic, you should be able to...

- 1. Use Punnett squares for exceptions to Mendelian Genetics (incomplete dominance, codominance, blood types, and sexlinkage)
- 2. Use Punnett squares for dihybrid crosses

Exceptions to Simple Dominance

- Incomplete Dominance: alleles "_____" (ex: pink flowers)
- Codominance: both alleles show up in their "_____" (ex: red and white splotchy flowers)

Incomplete Dominance

- There is no ______ allele or ______ allele
- Blending: Red and White flowers
 - \circ C^R or R=Red
 - \circ C^W or W=White
 - \circ C^R C^W or RW=Pink
- **Situation:** If red and white flower alleles show **incomplete dominance**, what offspring ratios will you see if you cross a red-flowered plant with a white-flowered plant?

Parent Genotypes:	
Offspring Ratios:	
Genotype:	
Phenotype:	

Codominance

- There is no dominant or recessive allele but both are expressed
 - Ex: a chicken with white & black feathers
- Situation: If black and white chicken alleles show codominance, what offspring ratios will you see if you cross a black chicken with a white chicken? Hybrids display speckled coloration.

Parent Genotypes: _____

Offspring Ratios: Genotype: _____

Phenotype: _____

Multiple Alleles

Sometimes there are more than ______ alleles for a particular gene. We call this inheritance pattern multiple alleles. For example, there are ______ alleles controlling human blood type ____, __, and ___.
 A and B are both dominant (express codominance) over O.

Genotypes	Phenotypes (Blood
^ ^	types) A
A B	AB
14	A
^B ^B	В
^B i	В
ii	0

homozygous and heterozygous.

Blood types AB and O only have one genotype each.

© 2007 Paul Billiet ODWS

1

Γ

Blood Type	Genotype		Can Receive Blood From:
А	i^i i^i^	АА АО	A or O
в	i ^B i i ^B i ^B	BB BO	B or O
AB	i [^] i ^B	AB	A, B, AB, O
0	11	00	0

Namo

OFTIS BIOlOgy		Name.	
Unit 7 Notes	Notes Genetics		
Situation: If two Parent Genotype Offspring Ratios -Genotype: -Phenotype:	parents with blood type AB have children, what o	offspring ratios will you see?	
Sex linked inheri	tance		
 Sex linka chromos > > Sex linka working Fruit flies Morgan but almo 	ge = the presence of genes on a sex ome () <-linked Genes = genes found on the X chromosome <-linked Genes = genes found on the Y chromosome ge was discovered by Thomas Morgan while with fruit fliestiny and easy to mate! s can have red or white eyes noticed that there were a few white eyed males, est no white-eyed females	Sex-linked traits $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	Sex-linked recessive
 1 0 6 6 7 8 8 8 9 9 10 10	The gene for fruit fly eye color is on the chro Compare the size of the X and Y chromosomes! Remember, males have only 1 X chromosome, wh Allele: X ^R re Allele: X ^r	mosome ile females have 2	

Example 1: X^RX^R x X^rY

_____ eyed female x ______-eyed male

Phenotype ratio: _____

Example 2: X^RX^r x X^RY

____-Eyed Female (HETEROZYGOTE) x ______-Eyed Male

Phenotype Ratio: _____

A Human Example of Sex Linkage

- Hemophilia is a human X-linked disorder that causes blood to clot incorrectly \rightarrow • patient "bleeds out" after a minor cut
- Normal Allele: X^H •
- Hemophilia Allele: X^h

Situation: Carrier Mother X Normal Father

Parent Genotypes:

 $X^{H}X^{h} \times X^{H}Y$

Phenotype Ratio:

- _____ normal females
- _____ normal males
- _____ hemophilic males

OPHS Biology Unit 7 Notes **Dihybrid Cross**

Name: ____

Genetics

- Involves ______ characteristics (two pairs of contrasting traits) for each individual.
- Predicting the results of a dihybrid cross is more complicated than predicting the results of a monohybrid cross.
- All possible combinations of the four alleles from each parent must be considered.
- How to's of Dihybrid Crosses
 - 1. Figure out the **alleles**:
 - Identify what trait/letter is <u>Dominant</u>(B Black fur) Identify what trait/letter is <u>Recessive</u> (b – Brown fur)
 - 2. Draw your **box** (<u>16</u> squares for dihybrids!)
 - Determine the Possible gametes (sex cells) that could be made from the parents. You should have <u>4</u> combinations (For AaBb: AB, Ab, aB, & ab) The letters should be all different for each combination! (Yr or Ab)
 - Label each side of Box, Plug & Chug! Put the <u>same letters</u> together again (AABb) Make sure to put **dominant** alleles First! (AaBb)
 - 5. Determine your possible **Genotypes**! (1/16 bbrr, etc) Double check your work, all the possible genotypes should add up to 16!
 - Determine your possible Phenotypes! (1/16 brown wrinkled, etc) Double check your work, all the possible phenotypes should add up to 16!

Expressing probabilities for genotypes & phenotypes (2 factor cross)

Ratios:

- 4/16 : fractions (parts of the total don't reduce)
- Genotype ratios are typically not used in 2 factor crosses
- Phenotype ratios use the DD:DR:RD:RR pattern
- Example- 9:3:3:1 (DD: DR: RD: RR)

Percentages:

• Need to label with trait

Finding the Gametes for Dihybrid Crosses

- Remember, each gamete must have ONE COPY of the two genes
- To find possible gametes for each parent, use the FOIL method
- **Dihybrid Crosses:** a cross between individuals that involves two traits (e.g., pod color and plant height) Tall = H Green pods = G

Short = h Yellow pods = g

OPHS Biology

Unit 7 Notes

Homozygous X Homozygous

Parent Genotypes: HHGG X hhgg

Offspring Ratios

-Genotype:

-Phenotype:

Name: ___

Genetics

• Heterozygous X Heterozygous

Parent Genotypes: HhGg X HhGg

Offspring Ratios:

-Genotype:

-Phenotype:

Language Targets for this unit are embedded in the topic practice.

9. How many of the children in generation 3 have the trait?

** We label each individual by their ______.
 → Examples: I-2, II-4, III-5.

2

Example Question: In pedigree 1, how are individuals II-1 and II-2 related?

Name: _

Genetics

Example 1: The pedigree below shows the inheritance of handedness in humans over three generations. The allele for right-handedness (R) is dominant over left-handedness (r). <u>The shaded individuals below are</u> recessive for handedness.

Language Targets for this unit are embedded in the topic practice.